首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A possible explanation for one of the most general trends in animal evolution - rapid divergent evolution of animal genitalia - is that male genitalia are used as courtship devices that influence cryptic female choice. But experimental demonstrations of stimulatory effects of male genitalia on female reproductive processes have generally been lacking. Previous studies of female reproductive physiology in the tsetse fly Glossina morsitans suggested that stimulation during copulation triggers ovulation and resistance to remating. In this study we altered the form of two male genital structures that squeeze the female's abdomen rhythmically in G. morsitans centralis and induced, as predicted, cryptic female choice against the male: sperm storage decreased, while female remating increased. Further experiments in which we altered the female sensory abilities at the site contacted by these male structures during copulation, and severely altered or eliminated the stimuli the male received from this portion of his genitalia, suggested that the effects of genital alteration on sperm storage were due to changes in tactile stimuli received by the female, rather than altered male behavior. These data support the hypothesis that sexual selection by cryptic female choice has been responsible for the rapid divergent evolution of male genitalia in Glossina; limitations of this support are discussed. It appears that a complex combination of stimuli trigger female ovulation, sperm storage, and remating, and different stimuli affect different processes in G. morsitans, and that the same processes are controlled differently in G. pallidipes. This puzzling diversity in female triggering mechanisms may be due to the action of sexual selection.  相似文献   

2.
Many hypotheses have been proposed to explain why male intromittent genitalia consistently tend to diverge more rapidly than other body traits of the same individuals in a wide range of animal taxa. Currently the two most popular involve sexual selection: sexually antagonistic coevolution (SAC) and cryptic female choice (CFC). A review of the most extensive attempts to discriminate between these two hypotheses indicates that SAC is not likely to have played a major role in explaining this pattern of genital evolution. Promising lines for future, more direct tests of CFC include experimental modification of male genital form and female sensory abilities, analysis of possible male–female dialogues during copulation, and direct observations of genital behavior.  相似文献   

3.
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

4.
Although the great genital diversity of the barklouse genus Trichadenotecnum has been described in previous studies, the specific function of the genital structures during the copulation process has received less investigative attention. We reconstructed 3D-models of each structure of the male and female genitalia of Trichadenotecnum incognitum in copula and those of uncopulated male and female of Trichadenotecnum pseudomedium. By comparing the changes in male and female genital structures and related muscles in copulated and uncopulated states, the function of each genital structure can be described. During the copulation, we found that the female subgenital plate was hooked into the male body by the distal process on the male paraproct and was fixed by the male epiproct, hypandrium and phallosome. In addition, sexual coevolution was suggested by tightly contacting structures, that is, thorny male hypandrium and thickened membrane around the female spermapore plate. These results not only give us a new understanding copulation process of Trichadenotecnum, but also explain the reasons why genital structures are so divers in the genus.  相似文献   

5.
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

6.
The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology—two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory.  相似文献   

7.
Genitalia are among the fastest evolving morphological traits as evidenced by their common function as diagnostic traits in species identification. Even though the main function of genitalia is the successful transfer of spermatozoa, the presence of diverse structures that are obviously not necessary for this suggests that genitalia are a target of sexual selection. The male genitalia of many spider species are extremely complex and equipped with numerous sclerites, plates and spines whose functions are largely unknown. Selection on male genitalia may be particularly strong in sexually cannibalistic spiders, where mating success of males is restricted to a single female. We investigated the copulatory mechanism of the sexually cannibalistic orb weaving spider Argiope bruennichi by shock freezing mating pairs and revealed a complicated interaction between the appendices and sclerites that make up the male gonopods (paired pedipalps). The plate that covers the female genital opening (scape) is secured between two appendices of the male genital bulb, while three sclerites that bear the sperm duct are unfolded and extended into the female copulatory opening. During copulation, females attack and cannibalise the male and males mutilate their genitalia in about 80% of cases. Our study demonstrates that (i) genital coupling is largely accomplished on the external part of the female genitalia, (ii) that the mechanism requires an interaction between several non-sperm-transferring structures and (iii) that there are two predetermined breaking points in the male genitalia. Further comparative work on the genus Argiope will test if the copulatory mechanism with genital mutilation indeed is an adaptation to sexual cannibalism or if cannibalism is a female counter adaptation to male monopolisation through genital plugging.  相似文献   

8.
The mechanisms driving the coevolution of male and female genital morphologies are still debated. Female genitalia in Drosophila species bear membranous “pouches” or hardened “shields,” which the male genital armature contact during copulation. Although shield‐like structures likely serve to mitigate the effects of harmful mating, some authors have suggested that soft pouches, which do not prevent male genitalia from inflicting wounds, represent a congruent sensory organ. To elucidate the evolutionary forces responsible for the development of such organs, I examined the effects of artificial damage to various genital parts of female Drosophila erecta on reproductive success. Despite a high survival rate among females, damage to the ovipositor plate resulted in frequent failure of insemination and in the embedment of eggs into the substrate. Damage to the vaginal shield resulted in increased mortality and frequent failure of egg embedment, with an egg blocking the vagina under the damaged shield in some females. Wounding of the pouch had less of an effect on both mating and oviposition success, suggesting that the structure “lures” the male trauma‐causing organs to areas where the resultant wounds do not interfere with insemination or oviposition. These data show that the dual functions of female genitalia (mating and oviposition) mediate genital coevolution.  相似文献   

9.
Male–male competition over fertilization can select for harmful male genital structures that reduce the fitness of their mates, if the structures increase the male's fertilization success. During secondary contact between two allopatrically formed, closely related species, harmful male genitalia may also reduce the fitness of heterospecific females given interspecific copulation. We performed a laboratory experiment to determine whether the extent of genital spine exaggeration in Callosobruchus chinensis males affects the fitness of C. maculatus females by injuring their reproductive organs. We found that males with more exaggerated genital spines were more likely to injure the females via interspecific copulation and that the genital injury translated into fecundity loss. Thus, as predicted, reproductive interference by C. chinensis males on C. maculatus females is mediated by exaggeration of the genital spine, which is the evolutionary consequence of intraspecific male–male competition. Harmful male traits, such as genital spines, might generally affect the extent of interaction between closely related species.  相似文献   

10.
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily--though largely independently of each other--within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs.  相似文献   

11.
12.
Rapid divergence in external genital structures occurs in nearly all animal groups that practice internal insemination; explaining this pattern is a major challenge in evolutionary biology. The hypothesis that species‐specific differences in male genitalia evolved under sexual selection as courtship devices to influence cryptic female choice (CFC) has been slow to be accepted. Doubts may stem from its radical departure from previous ideas, observational difficulties because crucial events occur hidden within the female's body, and alternative hypotheses involving biologically important phenomena such as speciation, sperm competition, and male‐female conflicts of interest. We assess the current status of the CFC hypothesis by reviewing data from two groups in which crucial predictions have been especially well‐tested, Glossina tsetse flies and Roeseliana (formerly Metrioptera) roeselii bushcrickets. Eighteen CFC predictions have been confirmed in Glossina and 19 in Roeseliana. We found data justifying rejection of alternative hypotheses, but none that contradicted CFC predictions. The number and extent of tests confirming predictions of the CFC hypothesis in these species is greater than that for other generally accepted hypotheses regarding the functions of nongenital structures. By this criterion, it is reasonable to conclude that some genital structures in both groups likely involved sexual selection by CFC.  相似文献   

13.
If species-specific male genitalia are courtship devices under sexual selection by cryptic female choice, then species-specific aspects of the morphology and behaviour of male genitalia should often function to stimulate the female during copulation. The morphology and behaviour of the complex, species-specific male genitalia of the tsetse fly, Glossina pallidipes Austen, were determined from both direct observations and dissections of flash-frozen copulating pairs; we found that some male genitalic traits probably function to stimulate the female, while others function to restrain her. The male clamps the ventral surface of the female's abdomen tightly with his powerful cerci. Clamping does not always result in intromission. Clamping bends the female's body wall and her internal reproductive tract sharply, posteriorly and dorsally, and pinches them tightly. The male performed sustained, complex, stereotyped, rhythmic squeezing movements with his cerci that were not necessary to mechanically restrain the female and appeared instead to have a stimulatory function. Six different groups of modified setae on and near the male's genitalia rub directly against particular sites on the female during squeezing. The designs of these setae correlate with the force with which they press on the female and the probable sensitivity of the female surfaces that they contact. As expected under the hypothesis that these structures are under sexual selection by female choice, several traits suspected to have stimulatory functions have diverged in G. pallidipes and its close relative, G. longipalpis. Additional male non-genitalic behaviour during copulation, redescribed more precisely than in previous publications, is also likely to have a courtship function. The elaborate copulatory courtship behaviour and male genitalia may provide the stimuli that previous studies showed to induce female ovulation and resistance to remating.  相似文献   

14.
Several insects exhibit strong asymmetry in male genital shape, but the functions of this asymmetry is unknown. In the four species of the family Mantidae belonging to the genera Tenodera, Statilia and Hierodula, male genitalia consist of a more complex left‐side lobe, with two well‐pointed sclerotized processes, the apical process (paa) and the distal process (pda). Female genitalia are symmetric, and the genital opening (gonopore) is concealed by placement of the ovipositor (ovi) into the subgenital plate (sgp). Mating with experimental males, in which either paa or pda was cut, demonstrated that paa is essential for successful copulation. By fluorescence detection of the surface of females mated with males in which the paa was coated with fine fluorescent beads, the paa attachment site was determined to be the left edge of the female sgp. This finding suggests that copulation begins with exposure of the female gonopore by the male hooking the paa to the sgp and unfastening the ovi from the sgp, as associated with other parts of the male genitalia. The extremely asymmetric male genitalia also determine their mating posture. The male, mounting the female, bends his abdomen from the right side of his mate to attach his paa to her sgp. We found no antisymmetry in male genitalia, and never observed reversal (leftward) abdominal bending by the males. This was the fixed mating posture, even in virgin males, suggesting its innateness.  相似文献   

15.
Male genitalia in Drosophila exemplify strikingly rapid and divergent evolution, whereas female genitalia are relatively invariable. Whereas precopulatory and post-copulatory sexual selection has been invoked to explain this trend, the functional significance of genital structures during copulation remains obscure. We used time-sequence analysis to study the functional significance of external genitalic structures during the course of copulation, between D. melanogaster and D. simulans. This functional analysis has provided new information that reveals the importance of male-driven copulatory mechanics and strategies in the rapid diversification of genitalia. The posterior process, which is a recently evolved sexual character and present only in males of the melanogaster clade, plays a crucial role in mounting as well as in genital coupling. Whereas there is ample evidence for precopulatory and/or post-copulatory female choice, we show here that during copulation there is little or no physical female choice, consequently, males determine copulation duration. We also found subtle differences in copulatory mechanics between very closely related species. We propose that variation in male usage of novel genitalic structures and shifts in copulatory behaviour have played an important role in the diversification of genitalia in species of the Drosophila subgroup.  相似文献   

16.
Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash‐frozen mating pairs from three Phyllophaga species and investigated fine‐scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity.  相似文献   

17.
Sexual conflict can produce several evolutionary outcomes, one of which is female-limited trait polymorphism. We examine the African bat bug Afrocimex constrictus (Cimicidae), a species where both sexes are subjected to traumatic intromission from males. We show that males possess female genital structures that in related species ameliorate the costs of traumatic insemination. Moreover, the male form of these structures differs morphologically from the standard female form. Examination of females in our isolated study population revealed a discrete polymorphism in female genitalia. Some females had the typical cimicid form, while others had genitalia that more closely resembled the distinctive male form. Males, as well as females with the distinctive male form, experienced fewer traumatic copulations than the typical female morph. We propose that some females mimic the bizarre male condition in order to reduce the frequency of costly traumatic inseminations. To our knowledge this is the first example of a distinct female-limited genital polymorphism: its nature, as well as its association with traumatic sexual interactions, strongly suggests that sexual conflict underpins this unique phenomenon.  相似文献   

18.
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level.  相似文献   

19.
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation.  相似文献   

20.
The criocerine leaf beetle Lema coronata Baly has extremely long genitalia that reach more than twice the body length in both sexes. We observed mating behavior of this species in the laboratory and inspected the male genital morphology using a scanning electron microscope. The males did not perform pre-copulatory courtship and post-copulatory guarding of the mates, and copulation lasted only for about 30 min. The surface of male genitalia is smooth without any special structures at the tip. A fragment of broken male genitalia was detected in the spermathecal duct of one female. We discuss the adaptive significance of male genital damage and the selective factor of elongated genitalia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号