首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition‐dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.  相似文献   

2.
The ‘good genes’ hypothesis of sexual selection predicts that male ornaments are favoured by female mate choice because male ornament reveals genetic quality. In species with different male reproductive tactics, variation in genetic quality among ‘sneaking’ males has rarely been investigated, as usually ‘sneakers’ are thought not to be chosen by females. Here we focused on the alternative reproductive tactic in Atlantic salmon (Salmo salar Linnaeus, 1758) to test whether the skin colour of sneakers may reveal the performance traits of their offspring. A fully factorial breeding design was realized between 20 sneakers and two females using in vitro fertilization. We quantified the red and dark colorations of males and measured the survival of their progeny under semi‐natural conditions. In addition, the size of offspring and their emergence timing from the gravel nest were monitored in the laboratory. We found that darker males sired more viable offspring, whereas red coloration was negatively correlated with offspring survival. Nevertheless, darker and redder male pigmentations were linked to a delay in offspring emergence. These results demonstrate that colours can reveal individual genetic quality in an alternative male reproductive tactic, with male melanin‐based coloration being linked to both beneficial and detrimental effects for the offspring. Our results imply that sneaker ornaments may potentially play a role in both intra‐ and intersexual selection. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 126–135.  相似文献   

3.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

4.
Abstract Although much theory depends on the genome‐wide rate of deleterious mutations, good estimates of the mutation rate are scarce and remain controversial. Furthermore, mutation rate may not be constant, and a recent study suggests that mutation rates are higher in mildly stressful environments. If mutation rate is a function of condition, then individuals carrying more mutations will tend to be in worse condition and therefore produce more mutations. Here I examine the mean fitnesses of sexual and asexual populations evolving under such condition‐dependent mutation rates. The equilibrium mean fitness of a sexual population depends on the shape of the curve relating fitness to mutation rate. If mutation rate declines synergistically with increasing condition the mean fitness will be much lower than if mutation rate declines at a diminishing rate. In contrast, asexual populations are less affected by condition‐dependent mutation rates. The equilibrium mean fitness of an asexual population only depends on the mutation rate of the individuals in the least loaded class. Because such individuals have high fitness and therefore a low mutation rate, asexual populations experience less genetic load than sexual populations, thus increasing the twofold cost of sex.  相似文献   

5.
Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival.  相似文献   

6.
Under the 'good genes' mechanism of sexual selection (SS), females benefit from mate choice indirectly: their offspring inherit genes of the preferred, high quality fathers. Recent models assume that the genetic variance for male quality is maintained by deleterious mutations. Consequently, SS can be predicted to remove deleterious mutations from populations. We tested this prediction by relaxing selection in populations of the bulb mite, thus increasing their rate of accumulation of deleterious mutation. SS, allowed to operate in half of these populations, did not prevent the fitness decline observed in the other half of the relaxed selection lines. After 11 generations of relaxed selection, female fecundity in lines in which males were allowed to compete for females declined compared with control populations by similar amount as in monogamous lines (17.5 and 14.5%, respectively), whereas other fitness components (viability, longevity, male reproductive success) did not differ significantly between both types of lines and control populations.  相似文献   

7.
According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.  相似文献   

8.
Peacocks are a classic example of sexual selection, where females preferentially mate with males who have longer, more elaborate trains. One of the central hypotheses of sexual selection theory is that large or elaborate male ‘ornaments’ may signal high genetic quality (good genes). Good genes are thought to be those associated with disease resistance and as diversity at the major histocompatibility complex (MHC) has been shown to equate to superior immune responses, we test whether the peacock’s train reveals genetic diversity at the MHC. We demonstrate via a captive breeding experiment that train length of adult males reflects genetic diversity at the MHC while controlling for genome‐wide diversity and that peahens lay more, and larger, eggs for males with a more diverse MHC, but not for males with longer trains. Our results suggest that females are assessing and responding to male quality in terms of MHC diversity, but this assessment does not appear to be via train length, despite the fact that train length reflects MHC diversity.  相似文献   

9.
Sexual ornaments contribute substantially to phenotypic diversity and it is particularly relevant to understand their evolution. Ornaments can assume the function of signals‐of‐quality that the choosy sex uses to evaluate potential mating partners. Often there are no obvious direct benefits and investment into mate choice is primarily rewarded by beneficial alleles that are inherited to the offspring. Inter‐sexual communication via sexual ornaments requires honesty of the sexual signal, yet the question of what maintains honesty remains only partially solved. One solution is that honesty is maintained by trait expression being dependent on individual condition, since condition‐dependent trait expression offers an effectively inexhaustible source of genetic variability. Here we test in the highly sexually dimorphic club‐legged grasshopper Gomphocerus sibiricus if putative sexual ornaments, in particular the striking front‐leg clubs, are more strongly affected by a lipopolysaccharide (LPS) immune challenge than putatively not sexually selected traits. Our results show overall little condition‐dependent expression of morphological and song traits, with sexually selected traits exhibiting effects comparable to nonsexually selected traits (with the possible exception of stridulatory file length and syllable‐to‐pause ratio in advertisement songs). Interestingly, field observations of individuals of lethally parasitized individuals suggest that a very strong environmental challenge can specifically affect the expression of the front‐leg clubs. The presence of 1% of males in natural populations with missing or heavily deformed clubs plus 5% with minor club deformations furthermore indicate that there are risks associated with club development during final ecdysis and this might act as a filter against deleterious alleles.  相似文献   

10.
Summary In the present paper we distinguish between two aspects of sexual reproduction. Genetic recombination is a universal features of the sexual process. It is a primitive condition found in simple, single-celled organisms, as well as in higher plants and animals. Its function is primarily to repair genetic damage and eliminate deleterious mutations. Recombination also produces new variation, however, and this can provide the basis for adaptive evolutionary change in spatially and temporally variable environments.The other feature usually associated with sexual reproduction, differentiated male and female roles, is a derived condition, largely restricted to complex, diploid, multicellular organisms. The evolution of anisogamous gametes (small, mobile male gametes containing only genetic material, and large, relatively immobile female gametes containing both genetic material and resources for the developing offspring) not only established the fundamental basis for maleness and femaleness, it also led to an asymmetry between the sexes in the allocation of resources to mating and offspring. Whereas females allocate their resources primarily to offspring, the existence of many male gametes for each female one results in sexual selection on males to allocate their resources to traits that enhance success in competition for fertilizations. A consequence of this reproductive competition, higher variance in male than female reproductive success, results in more intense selection on males.The greater response of males to both stabilizing and directional selection constitutes an evolutionary advantage of males that partially compensates for the cost of producing them. The increased fitness contributed by sexual selection on males will complement the advantages of genetic recombination for DNA repair and elimination of deleterious mutations in any outcrossing breeding system in which males contribute only genetic material to their offspring. Higher plants and animals tend to maintain sexual reproduction in part because of the enhanced fitness of offspring resulting from sexual selection at the level of individual organisms, and in part because of the superiority of sexual populations in competition with asexual clones.  相似文献   

11.
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.  相似文献   

12.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

13.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

14.
Clark SC  Sharp NP  Rowe L  Agrawal AF 《PloS one》2012,7(5):e37351
Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve.  相似文献   

15.
In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.  相似文献   

16.

Background  

An important component of sexual selection arises because females obtain viability benefits for their offspring from their mate choice. Females choosing extra-pair fertilization generally favor males with exaggerated secondary sexual characters, and extra-pair paternity increases the variance in male reproductive success. Furthermore, females are assumed to benefit from 'good genes' from extra-pair sires. How additive genetic variance in such viability genes is maintained despite strong directional selection remains an evolutionary enigma. We propose that sexual selection is associated with elevated mutation rates, changing the balance between mutation and selection, thereby increasing variance in fitness and hence the benefits to be obtained from good genes sexual selection. Two hypotheses may account for such elevated mutation: (1) Increased sperm production associated with sperm competition may increase mutation rate. (2) Mutator alleles increase mutation rates that are revealed by the expression of condition-dependent secondary sexual characters used by choosy females during their mate choice. M Petrie has independently developed the idea that mutator alleles may account for the maintenance of genetic variation in viability despite strong directional selection.  相似文献   

17.
Radwan J 《Genetica》2008,134(1):113-127
Female preferences for elaborate male sexual traits have been documented in a number of species in which males contribute only genes to the next generation. In such systems, mate choice has been hypothesised to benefit females genetically. For the genetic benefits to be possible there must be additive genetic variation (V(A)) for sexual ornaments, such that highly ornamented males can pass fitter genes on to the progeny of choosy females. Here, I review the mechanisms that can contribute to the maintenance of this variation. The variation may be limited to sexual ornaments, resulting in Fisherian benefits in terms of the increased reproductive success of male progeny produced by choosy females. Alternatively, ornaments may capture V(A) in other life-history traits. In the latter case, "good genes" benefits may apply in terms of improved performance of the progeny of either sex. Some mechanisms, however, such as negative pleiotropy, sexually antagonistic variation or overdominance, can maintain V(A )in ornaments and other life-history traits with little variation in total fitness, leaving little room for any genetic benefits of mate choice. Distinguishing between these mechanisms has consequences not only for the theory of sexual selection, but also for evolution of sex and for biological conservation. I discuss how the traditional ways of testing for genetic benefits can usefully be supplemented by tests detecting benefits resulting from specific mechanisms maintaining V(A )in sexual ornaments.  相似文献   

18.
Sexual selection when the female directly benefits   总被引:9,自引:0,他引:9  
Why do females of many species mate with males on the basis of traits apparently detrimental to male survival? The answer may lie in the fact that these male traits are correlated with male condition. We consider the argument that high male condition directly benefits female fecundity and/or viability (e.g. through lower transmission of parasites, improved control of resources, or better paternal care). Using a quantitative genetic model we show how female preferences for male traits that indicate condition can evolve, even if the male traits themselves have deleterious effects on both the male and the female's fecundity. So-called ‘arbitrary preferences’ can spread in this way because male traits subject to sexual selection are often under additional selection to become correlated with condition. At equilibrium the positive effects of male condition on a female's fecundity and the negative effects of the male trait on her fecundity are balanced and the female preference is under stabilizing selection. The male trait will often be correlated with viability, but not with fecundity, even though the preference evolved as a result of differences in male fecundity. The mean fecundity of females is not maximized, and can steadily decline as the male trait and female preference evolve. If the male trait has no direct deleterious effects on female fecundity, as may happen in species with no paternal care, female preferences are under continuous directional selection to increase.  相似文献   

19.
Darwinian evolution favours genotypes with high fitness (‘survival of the fittest’). Models of quasi‐species evolution, however, suggest that in some cases selection may favour genotypes that are more robust against the impact of mutations (‘survival of the flattest’) even if these genotypes have lower fitness. I show that the opposite effect will be observed if competition occurs during development (e.g. among embryos or ovules) or before the adult phase (e.g. among the progeny of an individual). If viability is not affected by selection at these initial stages (soft selection), the genotypes that are more sensitive to the effects of mutations may increase in frequency because they get rid more easily of deleterious mutations. In a simple theoretical model of mutation and selection, genotypes located in steeper regions of the fitness surface are favoured (‘survival of the steepest’) even if they do not have higher viability, and even if they have slightly deleterious effects. Hypersensitive genes are potentially harmful for the individual, but with soft selection during the juvenile phase they persist in the genome because they reduce competition with their mutants. Soft selection occurs in practically all vascular plants and in many animals, therefore antirobustness may be a very common feature of the genome of multicellular organisms.  相似文献   

20.
Sexual selection is argued to be important for the removal of deleterious mutations, promoting population fitness, accelerating adaptation, and compensating for the two‐fold cost of sex. Here we induced mutations in the dung beetle Onthophagus taurus using ionizing radiation, and tested the efficacy of sexual selection in their removal. Mutations reduced male precopulatory (strength) and postcopulatory (testes mass) sexual traits. Two generations of sexual selection were sufficient to remove mutations that affected male strength, but not testes mass. Induced mutations did not affect female productivity, which was elevated by sexual selection. Our results provide empirical support for the hypothesis that condition‐dependent traits offer a large target for mutational variation, and that sexual selection can purge the genome of deleterious mutations and promote population fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号