首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment‐specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2‐5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.  相似文献   

2.
Geographic variation in the reproductive traits of animal‐pollinated plants can be shaped by spatially variable selection imposed by differences in the local pollination environment. We investigated this process in Babiana ringens (Iridaceae), an enigmatic species from the Western Cape region of South Africa. B. ringens has evolved a specialized perch facilitating cross‐pollination by sunbirds and displays striking geographic variation in perch size and floral traits. Here, we investigate whether this variation can be explained by geographic differences in the pollinator communities. We measured floral and inflorescence traits, and abiotic variables (N, P, C, and rainfall) and made observations of sunbirds in populations spanning the range of B. ringens. In each population, we recorded sunbird species identity and measured visitation rates, interfloral pollen transfer, and whether the seed set of flowers was pollen limited. To evaluate whether competition from co‐occurring sunbird‐pollinated species might reduce visitation, we quantified nectar rewards in B. ringens and of other co‐flowering bird‐pollinated species in local communities in which populations occurred. Variation in abiotic variables was not associated with geographical variation of traits in B. ringens. Malachite sunbirds were the dominant visitor (97% of visits) and populations with larger‐sized traits exhibited higher visitation rates, more between‐flower pollen transfer and set more seed. No sunbirds were observed in four populations, all with smaller‐sized traits. Sunbird visitation to B. ringens was not associated with local sunbird activity in communities, but sunbird visitation was negatively associated with the amount of B. ringens sugar relative to the availability of alternative nectar sources. Our study provides evidence that B. ringens populations with larger floral traits are visited more frequently by sunbirds, and we propose that visitation rates to B. ringens may be influenced, in part, by competition with other sunbird‐pollinated species.  相似文献   

3.
Ambient temperature is one of the major environmental factors that modulate plant growth and development. There is extensive natural genetic variation in thermal responses of plants exemplified by the variation exhibited by the accessions of Arabidopsis thaliana. In this work we have studied the enhanced temperature response in hypocotyl elongation and flowering shown by the Tsu‐0 accession in long days. Genetic mapping in the Col‐0 × Tsu‐0 recombinant inbred line (RIL) population identified several QTLs for thermal response including three major effect loci encompassing candidate genes FRIGIDA (FRI), FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). We confirm and validate these QTLs. We show that the Tsu‐0 FRI allele, which is the same as FRI‐Ler is associated with late flowering but only at lower temperatures in long days. Using transgenic lines and accessions, we show that the FRI‐Ler allele confers temperature‐sensitive late flowering confirming a role for FRI in photoperiod‐dependent thermal response. Through quantitative complementation with heterogeneous inbred families, we further show that cis‐regulatory variation at FT contributes to the observed hypersensitivity of Tsu‐0 to ambient temperature. Overall our results suggest that multiple loci that interact epistatically govern photoperiod‐dependent thermal responses of A. thaliana.  相似文献   

4.
5.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

6.
C E Edwards  C Weinig 《Heredity》2011,106(4):661-677
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.  相似文献   

7.
Vernalization is an acceleration of flowering in response to chilling, and is normally studied in the laboratory at near‐freezing (2–4 °C) temperatures. Many vernalization‐requiring species, such as Arabidopsis thaliana, are found in a range of habitats with varying winter temperatures. Natural variation in the temperature range that elicits a vernalization response in Arabidopsis has not been fully explored. We characterized the effect of intermediate temperatures (7–19 °C) on 15 accessions and the well‐studied reference line Col‐FRI. Although progressively warmer temperatures are gradually less effective at activating expression of the vernalization‐specific gene VERNALIZATION‐INSENSITIVE 3 (VIN3) and in accelerating flowering, there is substantial natural variation in the upper threshold (Tmax) of the flowering‐time response. VIN3 is required for the Tmax (13 °C) response of Col‐FRI. Surprisingly, even 16 °C treatment caused induction of VIN3 in six tested lines, despite the ineffectiveness of this temperature in accelerating flowering for two of them. Finally, we present evidence that mild acceleration of flowering by 19 °C exposure may counterbalance the flowering time delay caused by non‐inductive photoperiods in at least one accession, creating an appearance of photoperiod insensitivity.  相似文献   

8.
Geographic variation in sexually selected traits is commonly attributed to geographic variation in the net benefit accrued from bearing such traits. Although natural and sexual selection are potentially important in shaping geographic variation, genetic constraints may also play a role. Although a genetic correlation between two traits may itself be the outcome of natural or sexual selection, it may indirectly reinforce the establishment and maintenance of cline variation with respect to one particular trait when across the cline different values of other traits are selected. Using the barn owl Tyto alba, a species in which the plumage of females is more reddish‐brown and more marked with black spots than that of males, I report results that are consistent with the hypothesis that both direct selection and genetic constraints may help establish and maintain cline variation in sexual dichromatism. In this species, inter‐individual variation in plumage coloration and spottiness has a genetic basis, and these traits are not sensitive to the environment. Data, based on the measurement of skin specimens, is consistent with the hypothesis that the stronger European cline variation in male spottiness than in female spottiness depends on the combined effects of (1) the similar cline variation in male and female plumage coloration and (2) the more intense phenotypic correlation between plumage coloration and spottiness in males (darker birds are more heavily spotted in the two sexes, but especially males) which is a general feature among the globally distributed barn owls. In northern Europe, male and female T. a. guttata are reddish‐brown and heavily spotted, and in southern Europe male and female T. a. alba are white, but only females display many spots. Here, I discuss the relative importance of direct selection, genetic correlation and the post‐ice age invasion of Europe by T. alba, in generating sex‐specific cline variation in plumage spottiness and non‐sex‐specific cline variation in plumage coloration.  相似文献   

9.
Does genetic variation in the insulin/insulin‐like growth factor signaling pathway (IIS) underlie latitudinal life‐history clines in North American Drosophila melanogaster? Durmaz et al. investigated how a clinally varying polymorphism in the IIS gene foxo affects fitness‐related traits by isolating the effects of alternative low and high latitude alleles. The phenotypic effects of the polymorphism—for example, on body size—matched those normally observed across the cline, suggesting that variation in IIS is important for clinal life‐history adaptation.  相似文献   

10.
Geographic trait variations are often caused by locally different selection regimes. As a steep environmental cline along altitude strongly influences adaptive traits, mountain ecosystems are ideal for exploring adaptive differentiation over short distances. We investigated altitudinal floral size variation of Campanula punctata var. hondoensis in 12 populations in three mountain regions of central Japan to test whether the altitudinal floral size variation was correlated with the size of the local bumblebee pollinator and to assess whether floral size was selected for by pollinator size. We found apparent geographic variations in pollinator assemblages along altitude, which consequently produced a geographic change in pollinator size. Similarly, we found altitudinal changes in floral size, which proved to be correlated with the local pollinator size, but not with altitude itself. Furthermore, pollen removal from flower styles onto bees (plant's male fitness) was strongly influenced by the size match between flower style length and pollinator mouthpart length. These results strongly suggest that C. punctata floral size is under pollinator‐mediated selection and that a geographic mosaic of locally adapted C. punctata exists at fine spatial scale.  相似文献   

11.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

12.
Association studies utilize the action of recombination over numerous generations to identify loci that underlie quantitative traits. We use a candidate‐gene association approach, segregation analyses and analyses of local linkage disequilibrium (LD) to evaluate the potentially causal effects of molecular variation at PIF4 (PHYTOCROME INTERACTING FACTOR 4) on ecologically important traits in Arabidopsis thaliana. A preliminary analysis of sequence diversity in 14 natural genotypes revealed one intermediate‐frequency replacement polymorphism at PIF4. A sample of 161 natural accessions was genotyped at PIF4 and screened for average length of early internodes, inflorescence length, days to flowering and flowering interval (days between bolting and flowering) under high‐ and low‐density environments to test for genotype‐phenotype associations. PIF4 was associated with early internode lengths, while the PIF4× treatment interaction was associated with flowering interval in the panel of 161 accessions. Further, in a set of recombinant inbred lines that segregate for the PIF4 polymorphism, nucleotide substitutions at PIF4 co‐segregated with early internode lengths, days to flowering and fruit set, suggesting that cryptic population structure in the association‐mapping panel and attendant LD with a physically distant locus do not account for the observed association. Finally, in a panel of pseudochromosomes from 20 re‐sequenced genotypes, LD appeared to decay rapidly in the immediate vicinity of PIF4, suggesting that flanking loci contribute little to the observed association. In sum, the results suggest that PIF4 causally affects early internode lengths on the primary inflorescence, potentially via effects on reproductive timing and that these traits in turn affect fitness.  相似文献   

13.
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower–pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird‐pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower–pollinator fit [floral tube length (TL) and anther–nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two‐fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower–pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among‐population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower–leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.  相似文献   

14.
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf‐level water‐use efficiency (WUE). In Arabidopsis, little is known about the variation of whole‐plant water use (PWU) and whole‐plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large‐scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water‐use strategies, namely, C24 (low PWU) and Col‐0 (high PWU). Subsequent quantitative trait loci mapping and validation through near‐isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf‐level traits.  相似文献   

15.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

16.
To assess variation in the proportion of self‐fertilized seeds among flowers within inflorescences and the relationship between floral traits and the rate of self‐fertilization, the proportion of self‐fertilized seeds among individual flowers was estimated using ten microsatellite markers in self‐compatible plants of Aquilegia buergeriana var. oxysepala. Within‐inflorescence variation in floral traits, such as the duration of the male and female phases, flower size, herkogamy and the number of pollen grains and ovules in two natural populations, were investigated. The first flower in an inflorescence produced more seeds and a higher proportion of self‐fertilized seeds than the second flower. The higher proportion of self‐fertilized seeds in the first flowers was accompanied by a higher number of pollen grains and ovules in the bud stage and the female phase. These results indicate that the high proportion of self‐fertilized seeds in the first flowers in an inflorescence may be due to the high number of remaining pollen grains in the female phase. This suggests that variation in floral traits within inflorescences affects seed quality and quantity among flowers within inflorescences.  相似文献   

17.
The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd‐H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress‐response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress‐response genes, while variation at Ppd‐H1 only affected the expression levels of stress genes. Osmotic stress up‐regulated expression of clock and stress‐response genes and advanced their expression peaks. Clock genes controlled the expression of stress‐response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress.  相似文献   

18.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

19.
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration.  相似文献   

20.
Ecological adaptation is the driving force during divergence with gene flow and generates reproductive isolation early in speciation. Although gene flow opposes divergence, local adaptation can be facilitated by factors that prevent the breakup of favorable allelic combinations. We investigated how selection, genetic architecture, and geography have contributed to the maintenance of floral trait divergence and pollinator isolation between parapatric ecotypes of Mimulus aurantiacus. Combining greenhouse, field, and genomic studies, we show that sharp clines in floral traits are maintained by spatially varying selection. Although adaptation breaks down where the ecotypes co‐occur, leading to the formation of a hybrid zone, the largely non‐overlapping distributions of the ecotypes shield them from immigrant genes, facilitating divergence across most of the range. In contrast to the sharp genetic discontinuities observed across most hybrid zones, we observed a gradual cline in genome‐wide divergence and a pattern of isolation by distance across the landscape. Thus, contrary to a long period of allopatry followed by recent re‐contact, our data suggest that floral trait divergence in M. aurantiacus may have evolved with locally restricted, but ongoing gene flow. Therefore, our study reveals how the geographic distribution of an organism can contribute to the evolution of premating isolation in the early stages of divergence with gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号