首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
A new genus of orthocladiine Chironomidae, Botryocladius (type species B. grapeth sp.n. from eastern Australia) is described and illustrated in all life history stages. All thirteen included species are described as new, six from eastern Australia (B. grapeth, B. brindabella, B. mdfrc, B. collessi, B. tasmania, B. australoalpinus), two from Western Australia (B. bibulmun and B. freemani), one from ephemeral streams in Australia (B. petrophilus) and four from Patagonian Argentina and Chile (B. edwardsi, B. glacialis, B. mapuche and B. tronador). All Australian species are known from at least pupal exuviae, most from adult males and several from larvae. In contrast, only B. edwardsi amongst Neotropical species is known from the adult male; all others are described from pupal exuviae. The immature stages are lotic in Australian permanent and temporary streams and Patagonian glacial streams and rivers, and lentic in Neotropical glacial-fed and Australian subalpine lakes. Botryocladius appears to belong with a grouping centred on two formally undescribed taxa from Australia. The genus evidently demonstrates a vicariant distribution with at least two sister-group relationships between South American and Australian taxa, providing a minimum dating for the clade of 38 Ma., with apparent absence from New Zealand indicating a maximum date of 80 Ma.  相似文献   

2.
Heterotermes Froggatt is a subterranean termite genus consisting of 30 living described species worldwide, with nine occurring in the New World. Herein we provide a molecular phylogeny, using both mitochondrial and nuclear markers, of all New World species of Heterotermes, including biogeographical analysis, and describe a new species from Paraguay and Bolivia, based on morphological and molecular evidence. Our analysis recovered the New World species as paraphyletic to a monophyletic Australian clade. Within this New World + Australian clade, two monophyletic major groups were formed c. 28 Ma: the aureus- and tenuis-groups. The aureus-group has a disjunct and broad distribution consisting of two clades. The first clade extends into the Nearctic region and a second is composed of a branch in the Caatinga and Cerrado biomes (H. sulcatus Mathews) and a branch in the Chacoan biome (a new species, Heterotermes lauralinearum Carrijo sp.n. ). The tenuis-group is composed of four broadly distributed Neotropical species and the Australian clade. A single dispersion event from South America to Australia probably occurred between 13 and 24 Ma. Heterotermes crinitus Emerson was the first to diverge, being sister group of all other species in the tenuis-group, followed by Heterotermes assu Constantino. An analysis of the historical biogeography of Heterotermes suggests that jump dispersal was the most important cladogenetic process for the genus. This study is the most comprehensive phylogeny of Heterotermes and contributes to the understanding of termite evolution and geographic distribution in the New World, complementing recent studies focused on worldwide patterns. This published work has been registered on Zoobank, http://zoobank.org/urn:lsid:zoobank.org:pub:8951A29B-8B69-4CD5-B9DF-2C70D4628D97 .  相似文献   

3.
Spider ants of the genus Leptomyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) are conspicuous species of Australasian rainforests, with putative fossil relatives in the Neotropics and Europe. There is longstanding debate over the biogeographical history of the genus, with the Palaearctic and Neotropical regions proposed as alternate centres of origin. We propose a resolution of this debate with the recent discovery and analysis of an extant species from central Brazil, L. relictus sp.n. , which we describe from workers, males and brood. We sequence ten nuclear genes in the new species and in several Australian Leptomyrmex species, and append these data to a 54‐taxon, 10‐gene data matrix previously generated for the subfamily Dolichoderinae. We conduct phylogenetic and divergence dating analyses, and re‐evaluate the fossil record of the group. We recover Leptomyrmex relictus sp.n. as a member of the Leptomyrmex clade with high support. It is sister to the Australasian species, and the genus Leptomyrmex is, in turn, sister to a pair of Neotropical genera, Forelius and Dorymyrmex. We infer a Neotropical origin for the genus and estimate a mid‐Eocene (46 Ma, 95% CI 56 to 36 Ma) origin for the crown genus and an Oligocene origin for the Australasian clade (29 Ma, 95% CI 40 to 19 Ma). We confirm placement of the Dominican amber species ?L. neotropicus Baroni Urbani in the genus but reject a close relationship with the Palaearctic fossil taxa ?Leptomyrmula Emery and ?Usomyrma Dlussky, Radchenko & Dubovikoff, considering them incertae sedis in the subfamily (Dolichoderinae). In contrast to the mesophilic preferences of the Australasian species of Leptomyrmex, the new Brazilian species inhabits cerrado (dry savannah). Our results support a Neotropical origin for spider ants with dispersal to Australia. Rafting on west‐bound currents and/or a historical diversity imbalance between Australia and South America are proposed as alternate hypotheses to explain a pattern of biased E–W mid‐Tertiary dispersal for ants with austral distributions. This pattern is suggested by our results in conjunction with observations of other ant clades. Overall, our findings highlight the value of integrated taxonomy, critical interpretation of morphology, and a comparative phylogenetic framework when conducting palaeontological and biogeographical studies of insect species. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:6E9E6617‐6E53‐40B8‐82C7‐67F89A83C553 .  相似文献   

4.
5.
A new family of eupodine Prostigmata, Eriorhynchidae fam.n. , is established to accommodate Eriorhynchus gen.n. , and five species from Australia: E.australicus (Womersley), E.hades sp.n. , E.ramosus sp.n. , E.walteri sp.n. and E.womersleyi sp.n. The new family is unique in the possession of 15–34 setae on the gnathosomatic base, a naso-prodorsal process with 9–28 setae and a palp tibia with 6 or 7 setae. A key to the families of Eupodoidea is provided. A cladistic analysis of twenty-seven eupodoid species from Australia and New Zealand is presented. Results indicate that the genus Eriorhynchus gen.n. (thus Eriorhynchidae) is monophyletic, and the Australian and New Zealand species of Halotydeus Berlese, Penthaleus C. L. Koch, Rhagidia Thorell and Stereotydeus Berlese form separate monophyletic goups, while the Penthaleidae are not monophyletic. The new family Eriorhynchidae is a sister group to a clade consisting of Penthaleus and Chromotydaeus quartus Qin & Halliday.  相似文献   

6.
The tribe Acanthoplectrini (Myrmeleontidae: Dendroleontinae) includes a group of antlion genera widely distributed across the Australasian and Oriental regions. The intergeneric and interspecific relationships between or within the Australian and Oriental lineages of this tribe as well as their historical biogeography remain largely unexplored. Here, we present a molecular phylogenetic and biogeographic analyses of Acanthoplectrini to infer the diversification history of this tribe, with emphasis on the Oriental lineage. Both the Oriental and Australian lineages are monophyletic and recovered as sister groups. Ancestral area reconstruction suggests that the ancestor of Acanthoplectrini might have been once widely distributed from Indochina to Australia and then split into the Oriental and Australian lineages during the early-Miocene. Our analyses recovered northeastern Indochina and south China as the ancestral range of the Oriental Acanthoplectrini. During the mid-Miocene to the mid-Pliocene, orographic events such as the rising of mountain ranges (including the Himalayas) and the formation of major islands in southeastern Asia triggered several dispersal and vicariance events in the Oriental Acanthoplectrini, driving their speciation. We revise the classification of the Oriental Acanthoplectrini, establishing the new genus Paralayahima gen. n. , which is recovered sister to Layahima Navás. Moreover, we describe four new species of Layahima, Layahima aspoeckorum sp. n. , Layahima monba sp. n. , Layahima lhoba sp. n. and Layahima xinliae sp. n. , and we reinstate two previously synonymized species, Layahima melanocoris (Yang) stat. rev. and comb. n. and Layahima nebulosa Navás stat. rev.  相似文献   

7.
To more confidently assess phylogenetic relationships among astome ciliates, we obtained small subunit (SSU) rRNA sequences from nine species distributed in six genera and three families: Almophrya bivacuolata, Eudrilophrya complanata, Metaracoelophrya sp. 1, Metaracoelophrya sp. 2, Metaracoelophrya intermedia, Metaradiophrya sp., Njinella prolifera, Paraclausilocola constricta n. gen., n. sp., and Paraclausilocola elongata n. sp. The two new species in the proposed new clausilocolid genus Paraclausilocola n. gen. are astomes with no attachment apparatus, two files of contractile vacuoles, and an arc-like anterior suture that has differentiations of thigmotactic ciliature on the anterior ends of the left kineties of the upper surface. Phylogenetic analyses were undertaken using neighbor-joining, Bayesian inference, maximum likelihood, and maximum parsimony. The nine species of astomes formed a strongly supported clade, showing the subclass Astomatia to be monophyletic and a weakly supported sister clade to the scuticociliates. There were two strongly supported clades within the astomes. However, genera assigned to the same family were found in different clades, and genera assigned to the same order were found in both clades. Thus, astome taxa appear to be paraphyletic when morphology is used to assign species to genera.  相似文献   

8.
Four new genera (Apomorphyto gen.n. from Costa Rica, Bixinia gen.n. from Australia, Rhinodonia gen.n. from New Caledonia, Rhinopeza gen.n. from Papua New Guinea) and nine new species (Apomorphyto inbio sp.n. , Bixinia collessi sp.n. , B. solitaria sp.n. , B. spei sp.n. , B. variabilis sp.n. , B. winkleri sp.n. , Rhinodonia antiqua sp.n. , R. flavicera sp.n. , Rhinopeza gracilis sp.n.) of Rhinophoridae (Diptera: Calyptratae, Oestroidea) are described. All new species were included in a morphology‐based phylogenetic analysis to provide arguments for the justification and monophyly (when nonmonotypic) of the new genera and for including these in the Rhinophoridae. The New Caledonian Rhinodonia is a candidate sister taxon to all other rhinophorids, and the Australasian ‘axiniine’ species emerge inside a clade of all Neotropical taxa thus suggesting migration from South America across Antarctica into Australia. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:51C1F448‐DDD0‐4F14‐8173‐B8C687F7E841 .  相似文献   

9.
Species of prorocentroid dinoflagellates are common in marine benthic sediment and epibenthic habitats, as well as in planktonic habitats. Marine planktonic prorocentroids typically possess a small spine in the apical region. In this study, we describe a new, potentially widely distributed benthic species of Prorocentrum, P. fukuyoi sp. nov., from tidal sand habitats in several sites in Australia and from central Japan. This species was found to possess an apical spine or flange and was sister species to P. emarginatum. We analyzed the phylogeny of the group including this new species, based on large subunit (LSU) rDNA sequences. The genus contained a high level of divergence in LSU rDNA, in some cases among sister taxa. P. fukuyoi and P. emarginatum were found to be most closely related to a clade of generally planktonic taxa. Several morphological features may constitute more informative synapomorphies than habitat in distinguishing clades of prorocentroid species.  相似文献   

10.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

11.
A phylogeny of Dianella is presented based on Bayesian and maximum parsimony analyses of a combined molecular data set using three chloroplast markers (trnQUUG–5'rps16, 3'rps16–5'trnK(UUU) and rpl14–rps8–infA–rpl36) and two nuclear markers (ITS and ETS). Accessions included most Dianella species, including all species from Australia, the centre of diversity for the genus, and related outgroup genera Eccremis, Stypandra, Thelionema and Herpolirion. The phylogeny showed Stypandra sister to Herpolirion + Thelionema, and confirmed the monophyly of Dianella. Within Dianella, a number of clades were resolved that revealed biogeographic relationships. Accessions from south-western Australia (extending into South Australia) formed the earliest diverging clade, followed by D. serrulata from New Guinea, sister to all other clades of Dianella from Australia and other regions. Tropical North Queensland species, including the D. pavopennacea complex, were related to a clade of accessions from New Caledonia and the Hawaiian Islands in the Pacific, and a clade that included samples of D. carolinensis (Caroline Islands) and the widespread D. ensifolia from South-East Asia and across the Indian Ocean to Mauritius and Madagascar. However, D. ensifolia is not monophyletic, with accessions from Japan and Taiwan related to a clade of Queensland samples that are part of the D. revoluta complex. Three New Zealand species (diploid, 2n?=?16) were found to be related to Norfolk Island D. intermedia (type locality; octoploid, 2n?=?64). In contrast ‘D. intermedia’ from Lord Howe Island was resolved as sister to the eastern Australian D. caerulea complex. The phylogenetic results indicate the need for taxonomic revision, particularly revision of the species ‘complexes’ D. longifolia and D. caerulea in Australia, and recognition of more than one species within D. ensifolia and within D. sandwicensis on the Hawaiian Islands.  相似文献   

12.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

13.
The first two fossil species of the canthyloscelid genus Synneuron are described based on compression wings. Synneuron eomontana sp. nov. is described from the Middle Eocene Coal Creek Member of the Kishenehn Formation, in the USA, and Synneuron jelli sp. nov. is described from the Lower Cretaceous Koonwarra Fossil Bed of the Korumburra Group, in Australia. The wings are illustrated and compared to the extant species of the genus, to species of the three other recent genera of Canthyloscelidae and to an anisopodid. A phylogenetic analysis of the relationships between the species of Synneuron was performed. The Eocene fossil S. eomontana appears as sister of the pair of recent Holarctic species of the genus, while the Australian Cretaceous species S. jelli is sister of the clade with the species of Synneuron of the northern hemisphere. The sister group of Synneuron is the canthyloscelid clade (Hyperoscelis + Canthyloscelis), for which a middle Jurassic fossil is known. At the early Cretaceous, Gondwana was already separated from Laurasia and the disjunction between the species of Synneuron in Australia and the northern hemisphere clade of the genus suggest a true pangeic origin for the genus. The biology of the canthyloscelid larvae is shaped by its trophic specialization—xylosaprophagous. This suggests that the transition from the Pangean Jurassic gymnosperm-dominated forests to the late Cretaceous angiosperm-dominated forests may be related to the low recent diversity of Synneuron or of the canthyloscelids in the world—and maybe to the extinction of the genus in the southern hemisphere. This major turnover of the vegetation type along the Cretaceous may be also somehow related to the complete extinction of other groups of flies strictly associated with gymnosperms, as may be the case of the lower brachyceran family Zhangsolvidae. This speculation needs additional corroboration from other groups, that will become available with the combination of systematics, paleontology and biogeographical information of different early Cretaceous clades.  相似文献   

14.
Evolutionary relationships in the widely distributed velvet worm Peripatopsis balfouri sensu lato species complex were examined using DNA sequence data, gross and SEM morphology. Sequence data were generated for the COI mtDNA and the 18S rRNA loci and analysed using a Bayesian inference approach, maximum likelihood and maximum parsimony. Phylogenetic analyses of the combined DNA sequence data revealed that Peripatopsis clavigera specimens from the southern Cape (clade 1) was sister to P. balfouri sensu lato specimens from the Cederberg Mountains (clade 2). Within the main P. balfouri sensu lato species complex, three addition clades could be discerned (clades 3, 4 and 5). The obligatory troglobitic species Peripatopsis alba was equidistant between the Cape Peninsula and adjacent interior (clade 3) and the two Boland and Hottentots Holland Mountains (clades 4 and 5). On the Cape Peninsula, P. stelliporata specimens nested among the sympatric P. balfouri sensu lato specimens. The Cape Peninsula specimens were sister to specimens from Jonkershoek site 1, Kogelberg and Simonsberg. Two Boland clades were retrieved, comprising Du Toit's Kloof, Bain's Kloof and Mitchell's Pass and sister (in clade 4) to specimens from the Boland and adjacent Hottentots Holland Mountains in clade 5. These results revealed complex biogeographic patterning in the P. balfouri sensu lato species complex. The presence of sympatric, yet genetically discrete species pairs at six of the sample localities (Du Toit's Kloof, Simonsberg, Jonkershoek sites 1 and 2, Kogelberg and Landroskop) suggests that there is reproductive isolation between the lineages. Divergence time estimations suggest a Miocene/Pliocene/Pleistocene cladogenesis. A taxonomic revision of the P. balfouri sensu lato species complex was undertaken to stabilize the taxonomy. P. clavigera is monophyletic and retained for the southern Cape specimens, P. balfouri sensu stricto is now confined to the Cape Peninsula and adjacent interior, while P. stelliporata is regarded as a junior synonym of the latter taxon, P. alba is endemic to the Wynberg Cave systems on the Cape Peninsula. Three novel species (Peripatopsis cederbergiensis, sp. n., Peripatopsis bolandi sp. n. and Peripatopsis purpureus, sp. n.) are described.  相似文献   

15.
The genus Syrphetodes Broun is revised to include a total of 13 species. Most of the species are restricted in their distributions, are rarely collected and have been attributed conservation status in New Zealand. Eleven species are described as new: three from Northland (S. relictus sp.n ., Te Paki; S. insularis sp.n. , Three Kings Islands; S. magnus sp.n. , Hokianga), one from the central North Island (S. obtusus sp.n. ), one from Central Otago (S. nunni sp.n. , Waikaia Bush), and seven from the southern Alps (S. cirrhopogon sp.n. , Aspiring National Park; S. occiduus sp.n. , Westland; S. melanopogon sp.n. , Mt Dewar, Paparoa Range; S. defectus sp.n. , northern Paparoa Range; S. marrisi sp.n. , Mt Domett, Northwest Nelson; S. carinatus sp.n. , Victoria Range). Eleven synonymies are proposed: S. crenatus Broun (= S. dorsalis Broun, syn.n .), S. marginatus Pascoe (= S. bullatus Sharp, syn.n. ; S. sylvius Broun, syn.n. ; S. cordipennis Broun, syn.n. ; S. punctatus Broun, syn.n. ; S. simplex Broun, syn.n. ; S. nodosalis Broun, syn.n. ; S. truncatus Broun, syn.n. ; S. variegatus Broun, syn.n. ; S. pensus Broun, syn.n. ; S. thoracicus Broun, syn.n. ). The phylogenetic relationships among the species were reconstructed using morphological (25 adult characters) and DNA sequence (nuclear 28S rDNA and mitochondrial cytochrome c oxidase subunit I) data. A morphological analysis rooted with Trachyderastes resulted in a split between lowland and high‐altitude species and a well‐supported group from Northland. Molecular trees rooted with representatives of Trachyderastes Kaszab (New Caledonia), Meryx Latrielle (Australia), Ulodes Erichson (Australia) and three New Zealand genera (Arthopus Sharp, Brouniphylax Strand, Exohadrus Broun) resulted in the following tree: ((Ulodes, Brouniphylax) (Exohadrus, Arthopus)) (Syrphetodes (Meryx, Trachyderastes)). Species relationships within Syrphetodes included a strongly supported northern North Island clade and an alpine clade either as sister taxon to S. crenatus and S. marginatus or sister remaining lowland lineages. Combined phylogenetic analyses also showed paritial congruence with separate partitions. The distributions of the lowland species, in particular those from the North Island, correspond to islands that existed in the Pliocene. The alpine, black‐coloured lineage, found above the treeline, is monophyletic based on several characters (e.g. lack of abdominal flanges and reduced scalation) and, in some reconstructions, the tan‐coloured S. cirrhopogon is sister taxon to the remaining black‐coloured species. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:697E68E8‐EE90‐46C1‐A009‐78A794E0EF4F .  相似文献   

16.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:2,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

17.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

18.
A remarkable new genus and two new species of Mantispidae (Neuroptera) are described from the Oriental region. Allomantispa Liu, Wu, Winterton & Ohl gen.n. , currently including A. tibetana Liu, Wu & Winterton sp.n. and A. mirimaculata Liu & Ohl sp.n. The new genus is placed in the subfamily Drepanicinae based on a series of morphological characteristics and on the results of total evidence phylogenetic analyses. Bayesian and Parsimony analyses were undertaken using three gene loci (CAD, 16S rDNA and COI) combined with 74 morphological characters from living and fossil exemplars of Mantispidae (17 genera), Rhachiberothidae (two genera) and Berothidae (five genera), with outgroup taxa from Dilaridae and Osmylidae. The resultant phylogeny presented here recovered a monophyletic Mantispidae with ?Mesomantispinae sister to the rest of the family. Relationships among Mantispidae, Rhachiberothidae and Berothidae support Rhachiberothidae as a separate family sister to Mantispidae. Within Mantispidae, Drepanicinae are a monophyletic clade sister to Calomantispinae and Mantispinae. In a combined analysis, Allomantispa gen.n. was recovered in a clade comprising Ditaxis McLachlan from Australia, and two fossil genera from the Palaearctic, ?Promantispa Panfilov (Kazakhstan; late Jurassic) and ?Liassochrysa Ansorge & Schlüter (Germany; Jurassic), suggesting a highly disjunct and relictual distribution for the family. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:464B06E8‐47E6‐482E‐8136‐83FE3B2E9D6B .  相似文献   

19.
A phylogenetic analysis of genera within the informal suballiance Beaufortia (family Myrtaceae), largely endemic to Australia and New Caledonia, is presented based on separate and combined data sets for 5S and ITS-1 spacer regions of nuclear ribosomal DNA. The two sets were not in conflict but the 5S data set was more informative. Data were analysed using conventional parsimony, jackknife parsimony, and three-item parsimony analyses. Three-item analysis gave more resolved trees than conventional parsimony analysis. The Beaufortia suballiance includes two major clades, with all Australian representatives of Callistemon (shown to be monophyletic) and most Australian representatives of Melaleuca forming one of these. The sister clade comprises a well-defined group of endemic New Caledonian taxa (classified as Callistemon and Melaleuca ), some Australian species of Melaleuca , a clade including the Western Australia/Northern Territory genera Beaufortia, Lamarchea , and Regelia , and a clade including the south-west Western Australian genera Calothamnus, Eremaea, Conothamnus , and Phymatocarpus . All molecular analyses sup port the monophyly of Conothamnus and of Regelia , genera for which a number of species were included. Three-item analysis of the combined data set supports the monophyly of Beaufortia . The findings have implications for both taxonomy and biogeography.  相似文献   

20.
The phylogeny of three groups of arid Australian acacias ‐ the Acacia victoriae, A. murrayana and A. pyrifolia groups ‐ was constructed based on parsimony analysis of sequence data from the internal and external transcribed spacers (ITS and ETS) of the nuclear ribosomal DNA. Forty ingroup taxa were sequenced, including multiple accessions for some taxa and two species (A platycarpa and A. longispinea) that had been identified in other analyses as relatives of these acacias. Acacia anthochaera was used as the functional outgroup.

The ITS and ETS regions proved to be sufficiently variable to resolve relationships at both the specific and intra‐specific level. Two main clades were resolved. One clade confirmed the monophyly of the Acacia murrayana group, and relationships of species were strongly supported. All taxa in this clade have a similar pattern of seedling leaf development. In the second clade, the A. pyrifolia group is nested within the A. victoriae group and all taxa have spinose stipules. Acacia platycarpa and A. longispinea are related to this clade. Phyllode nerve number (uninerved or plurinerved) proved to be homoplasious.

Acacia victoriae is a widespread and very variable species. The molecular data identified two major groups: a group of populations occurring across northern Australia and a group of populations from the Western, Central and Eastern deserts. Further analysis of population variation is required to assess the taxonomic status of various forms in this species complex.

The geographic distributions of sister taxa suggest predominantly allopatric speciation. The degree of molecular divergence and position of the clades within subgenus Phyllodineae suggest that the lineages are not of recent origin, but have a history that relates to increased aridity in the Australian Eremean region during the Cenozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号