首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Sexual selection reflects the joint contributions of precopulatory selection, which arises from variance in mating success, and postcopulatory selection, which arises from variance in fertilization success. The relative importance of each episode of selection is variable among species, and comparative evidence suggests that traits targeted by precopulatory selection often covary in expression with those targeted by postcopulatory selection when assessed across species, although the strength and direction of this association varies considerably among taxa. We tested for correlated evolution between targets of pre‐ and postcopulatory selection using data on sexual size dimorphism (SSD) and testis size from 151 species of squamate reptiles (120 lizards, 31 snakes). In squamates, male–male competition for mating opportunities often favors large body size, such that the degree of male‐biased SSD is associated with the intensity of precopulatory selection. Likewise, competition for fertilization often favors increased sperm production, such that testis size (relative to body size) is associated with the intensity of postcopulatory selection. Using both conventional and phylogenetically based analyses, we show that testis size consistently decreases as the degree of male‐biased SSD increases across lizards and snakes. This evolutionary pattern suggests that strong precopulatory selection may often constrain the opportunity for postcopulatory selection and that the relative importance of each selective episode may determine the optimal resolution of energy allocation trade‐offs between traits subject to each form of sexual selection.  相似文献   

2.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

3.
Sexual size dimorphism (SSD) is one of the most common ways in which males and females differ. Male‐biased SSD (when males are larger) is often attributed to sexual selection favouring large males. When females are larger (female‐biased SSD), it is often argued that natural selection favouring increased fecundity (i.e. larger clutches or eggs) has coevolved with larger female body size. Using comparative phylogenetic and multispecies regression model selection approaches, we test the hypothesis that among‐species variation in female fecundity is associated with the evolution of female‐biased SSD. We also ask whether the hypothesized relationship between SSD and fecundity is relaxed upon the evolution of parental care. Our results suggest a strong relationship between the evolution of fecundity and body size, but we find no significant relationship between fecundity and SSD. Similarly, there does not appear to be a relationship between fecundity and the presence or absence of parental care among species. Thus, although female body size and fecundity coevolve, selection for increased fecundity as an explanation for female‐biased SSD is inconsistent with our analyses. We caution that a relationship between female body size and fecundity is insufficient evidence for fecundity selection driving the evolution of female‐biased SSD.  相似文献   

4.
Sex differences in parental care are thought to arise from differential selection on the sexes. Sexual dimorphism, including sexual size dimorphism (SSD), is often used as a proxy for sexual selection on males. Some studies have found an association between male‐biased SSD (i.e., males larger than females) and the loss of paternal care. While the relationship between sexual selection on males and parental care evolution has been studied extensively, the relationship between female‐biased SSD (i.e., females larger than males) and the evolution of parental care has received very little attention. Thus, we have little knowledge of whether female‐biased SSD coevolves with parental care. In species displaying female‐biased SSD, we might expect dimorphism to be associated with the evolution of paternal care or perhaps the loss of maternal care. Here, drawing on data for 99 extant frog species, we use comparative methods to evaluate how parental care and female‐biased SSD have evolved over time. Generally, we find no significant correlation between the evolution of parental care and female‐biased SSD in frogs. This suggests that differential selection on body size between the sexes is unlikely to have driven the evolution of parental care in these clades and questions whether we should expect sexual dimorphism to exhibit a general relationship with the evolution of sex differences in parental care.  相似文献   

5.
Female‐biased sexual size dimorphism (SSD) is often considered an epiphenomenon of selection for the increased mating opportunities provided by early male maturation (i.e., protandry). Empirical evidence of the adaptive significance of protandry remains nonetheless fairly scarce. We use field data collected throughout the reproductive season of an SSD crab spider, Mecaphesa celer, to test two hypotheses: Protandry provides fitness benefits to males, leading to female‐biased SSD, or protandry is an indirect consequence of selection for small male size/large female size. Using field‐collected data, we modeled the probability of mating success for females and males according to their timing of maturation. We found that males matured earlier than females and the proportion of virgin females decreased abruptly early in the season, but unexpectedly increased afterward. Timing of female maturation was not related to clutch size, but large females tended to have more offspring than small females. Timing of female and male maturation was inversely related to size at adulthood, as early‐maturing individuals were larger than late‐maturing ones, suggesting that both sexes exhibit some plasticity in their developmental trajectories. Such plasticity indicates that protandry could co‐occur with any degree and direction of SSD. Our calculation of the probability of mating success along the season shows multiple male maturation time points with similar predicted mating success. This suggests that males follow multiple strategies with equal success, trading‐off access to virgin females with intensity of male–male competition. Our results challenge classic hypotheses linking protandry and female‐biased SSD, and emphasize the importance of directly testing the often‐assumed relationships between co‐occurring animal traits.  相似文献   

6.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

7.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

8.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

9.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

10.
Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb‐weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum‐likelihood molecular species‐level phylogeny, and then used it to reconstruct sex‐specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female‐biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales.  相似文献   

11.
Males and females differ in body size in many animals, but the direction and extent of this sexual size dimorphism (SSD) varies widely. Males are larger than females in most lizards of the iguanian clade, which includes dragon lizards (Agamidae). I tested whether the male larger pattern of SSD in the peninsula dragon lizard, Ctenophorus fionni, is a result of sexual selection for large male size or relatively higher mortality among females. Data on growth and survivorship were collected from wild lizards during 1991–1994. The likelihood of differential predation between males and females was assessed by exposing pairs of male and female lizards to a predator in captivity, and by comparing the frequency of tail damage in wild‐caught males and females. Male and female C. fionni grew at the same rate, but males grew for longer than females and reached a larger asymptotic size (87 mm vs. 78 mm). Large males were under‐represented in the population because they suffered higher mortality than females. Predation may account for some of this male‐biased mortality. The male‐biased SSD in C. fionni resulted from differences in growth pattern between the sexes. The male‐biased SSD was not the result of proximate factors reducing female body size. Indeed SSD in this species remained male‐biased despite high mortality among large males. SSD in C. fionni is consistent with the ultimate explanation of sexual selection for large body size in males.  相似文献   

12.
Sexual size dimorphism(SSD) is a widespread phenomenon among animals, and whose evolution and maintenance has been a central topic in evolutionary biology since Darwin's time. SSD varies in direction among the major taxonomic groups of animals and even within the same groups. In anurans, female biased SSD is the rule in many lineages, whereas male biased SSD is a rare phenomenon. In this paper, we analyze whether SSD exists inLeptobrachium leishanensis by comparing morphological characteristics between the sexes. Our results show that all six morphological characteristics measured are significantly different between the sexes. Males are significantly larger than females, indicating that the male biased SSD of this species is apparent. The size of the nuptial spines, a special secondary sex trait of males, is significantly and positively correlated with body size. We suggest that the resource defense polygyny mating system and parental care behavior may be explanations for the evolution of male biased SSD and nuptial spine development in this species.  相似文献   

13.
Sexual dimorphism is prevalent in most living organisms. The difference in size between sexes of a given species is generally known as sexual size dimorphism (SSD). The magnitude of the SSD is determined by Rensch's rule where size dimorphism increases with increasing body size when the male is the larger sex and decreases with increasing average body size when the female is the larger sex. The unique underground environment that zokors (Eospalax baileyi) live under in the severe habitat of the Qinghai‐Tibetan Plateau (QTP) could create SSD selection pressures that may or may not be supported by Rensch's rule, making this scientific question worthy of investigation. In this study, we investigated the individual variation between sexes in body size and SSD of plateau zokors using measurements of 19 morphological traits. We also investigated the evolutionary mechanisms underlying SSD in plateau zokors. Moreover, we applied Rensch's rule to all extant zokor species. Our results showed male‐biased SSD in plateau zokors: The body‐ and head‐related measurements were greater in males than in females. Linear regression analysis between body length, body weight, and carcass weight showed significant relationships with some traits such as skull length, lower incisor length, and tympanic bulla width, which might support our prediction that males have faster growth rates than females. Further, the SSD pattern corroborated the assumption of Rensch's rule in plateau zokors but not in the other zokor species. Our findings suggest that the natural underground habitat and behavioral differences between sexes can generate selection pressures on male traits and contribute to the evolution of SSD in plateau zokors.  相似文献   

14.
Eusocial insects offer a unique opportunity to analyze the evolution of body size differences between sexes in relation to social environment. The workers, being sterile females, are not subject to selection for reproductive function providing a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other kinds of natural selection. Patterns of sexual size dimorphism (SSD) and testing of Rensch's rule controlling for phylogenetic effects were analyzed in the Meliponini or stingless bees. Theory predicts that queens may exhibit higher selection for fecundity in eusocial taxa, but contrary to this, we found mixed patterns of SSD in Meliponini. Non‐Melipona species generally have a female‐biased SSD, while all analyzed species of Melipona showed a male‐biased SSD, indicating that the direction and magnitude of the selective pressures do not operate in the same way for all members of this taxon. The phylogenetic regressions revealed that the rate of divergence has not differed between the two castes of females and the males, that is, stingless bees do not seem to follow Rensch's rule (a slope >1), adding this highly eusocial taxon to the various solitary insect taxa not conforming with it. Noteworthy, when Melipona was removed from the analysis, the phylogenetic regressions for the thorax width of males on queens had a slope significantly smaller than 1, suggesting that the evolutionary divergence has been larger in queens than males, and could be explained by stronger selection on female fecundity only in non‐Melipona species. Our results in the stingless bees question the classical explanation of female‐biased SSD via fecundity and provide a first evidence of a more complex determination of SSD in highly eusocial species. We suggest that in highly eusocial taxa, additional selection mechanisms, possibly related to individual and colonial interests, could influence the evolution of environmentally determined traits such as body size.  相似文献   

15.
Hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) generally assume that in dimorphic species males rarely interfere with each other. Here we provide the first multivariate examination of sexual selection because of male-male competition over access to females in a species with 'dwarf' males, the orb-weaving spider Argiope aurantia. Male A. aurantia typically try to mate opportunistically during the female's final moult when she is defenceless. We show that, contrary to previous hypotheses, the local operational sex ratio (males per female on the web) is male-biased most of the season. Both interference and scramble competition occur during opportunistic mating, the former leading to significant selection for large male body size. Male condition and leg length had no effect on mating success independent of size. We discuss these findings in the context of the evolution of extreme female-biased SSD in this clade.  相似文献   

16.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

17.
Sexual selection has been identified as a major evolutionary force shaping male life history traits but its impact on female life history evolution is less clear. Here we examine the impact of sexual selection on three key female traits (body size, egg size and clutch size) in Galliform birds. Using comparative independent contrast analyses and directional discrete analyses, based on published data and a new genera-level supertree phylogeny of Galliform birds, we investigated how sexual selection [quantified as sexual size dimorphism (SSD) and social mating system (MS)] affects these three important female traits. We found that female body mass was strongly and positively correlated with egg size but not with clutch size, and that clutch size decreased as egg size increased. We established that SSD was related to MS, and then used SSD as a proxy of the strength of sexual selection. We found both a positive relationship between SSD and female body mass and egg size and that increases in female body mass and egg size tend to occur following increases in SSD in this bird order. This pattern of female body mass increases lagging behind changes in SSD, established using our directional discrete analysis, suggests that female body mass increases as a response to increases in the level of sexual selection and not simply through a strong genetic relationship with male body mass. This suggests that sexual selection is linked to changes in female life history traits in Galliformes and we discuss how this link may shape patterns of life history variation among species.  相似文献   

18.
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female‐biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female‐biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.  相似文献   

19.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

20.
Hypotheses for the origin and maintenance of sexual size dimorphism (SSD) fall into three primary categories: (i) sexual selection on male size, (ii) fecundity selection on female size and (iii) ecological selection for gender‐specific niche divergence. We investigate the impact of these forces on SSD evolution in New World pitvipers (Crotalinae). We constructed a phylogeny from up to eight genes (seven mitochondrial, one nuclear) for 104 species of NW crotalines. We gathered morphological and ecological data for 82 species for comparative analyses. There is a strong signal of sexual selection on male size driving SSD, but less evidence for fecundity selection on female size across lineages. No support was found for allometric scaling of SSD (Rensch's rule), nor for directional selection for increasing male size (the Fairbairn–Preziosi hypothesis) in NW crotalines. Interestingly, arboreal lineages experience higher rates of SSD evolution and a pronounced shift to female‐biased dimorphism. This suggests that fecundity selection on arboreal females exaggerates ecologically mediated dimorphism, whereas sexual selection drives male size in terrestrial lineages. We find that increasing SSD in both directions (male‐ and female‐biased) decreases speciation rates. In NW crotalines, it appears that increasing magnitudes of ecologically mediated SSD reduce rates of speciation, as divergence accumulates within species among sexes, reducing adaptive divergence between populations leading to speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号