首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.

Key message

The paper demonstrates the prospects and applications of dendrochronology for understanding climate change effects on riparian forests in the savanna landscape. 

Abstract

Riparian trees in savannas have a potential for dendro-climatic studies, but have been neglected hitherto. We examined ring-width series of Afzelia africana (evergreen) and Anogeissus leiocarpus (deciduous) to study the influence of climatic factors on the growth of riparian trees in the humid (HS) and dry (DS) savanna zones of the Volta basin in Ghana. A total of 31 stem discs belonging to A. africana and A. leiocarpus were selected from HS and DS to establish species-specific local chronologies of tree growth. Each individual of A. africana and A. leiocarpus from the two savanna sites showed distinct growth rings. Cross-dating of individual tree-ring patterns was successful using standard dendrochronological techniques. The mean annual growth rates of A. africana in the HS (1.38 ± 0.09) and DS (1.34 ± 0.08) were not statistically different. Furthermore, mean annual growth rate of A. leiocarpus in the DS (3.75 ± 0.27) was higher than in the HS (2.83 ± 0.16) suggesting that species in drier environment can have higher growth rates when sufficient soil moisture is available. The growth rates of both species at the same sites were different, which might indicate different water use strategies. High correlations of individual tree-ring series of A. africana and A. leiocarpus trees at HS and DS suggest a strong climatic forcing controlled by the seasonal movement of the inter-tropical convergence zone. The annual growth of A. africana and A. leiocarpus at both the HS and DS was significantly correlated with local temperature and precipitation. The negative correlations of the growth of the two tree species to global sea surface temperatures were however, indications that the growth of riparian forests can be impacted during El Niño-Southern Oscillation years. The result of our study shows that riparian trees in the humid and dry savanna zones of West Africa can be successfully used for dendrochronological studies.
  相似文献   

2.
Coastal dune areas are valuable ecosystems, generally impacted by habitat destruction and invasive alien species. In this study, we assessed how human disturbance and invasion by Carpobrotus edulis impact the soils and the establishment of native flora in the north-western coastal regions of Spain. We compared soil characteristics (pH, conductivity, water content, nutrients and enzymatic activities) and native plant as well as C. edulis fitness correlates (germination and early growth) between uninvaded and invaded soils from urban and natural coastal dune areas. We found that human disturbance impacts coastal soils by increasing organic matter and water content, modifying soil nutrients and cycles, and reducing the pH in urban soils. The presence of invasive C. edulis further increases these impacts. These changes in soil characteristics allow for the establishment of the native, but ruderal, Scolymus hispanicus and non-native C. edulis, both of which are not adapted to the typically limiting conditions of coastal dunes. In some instances, the coastal dune endemic, Malcolmia littorea, showed no fitness effects in response to urbanization or the presence of C. edulis. These results suggest that human disturbed coastal areas might be more easily invaded than natural areas. More broadly, our findings of differential responses of different native species to disturbance and invasion, illustrate the need for multi-taxon approaches when assessing the impacts of invasive species.  相似文献   

3.
Savanna vegetation in the northern region of Brazil is jeopardized by several anthropogenic activities including cattle ranching and extensive agriculture, and soil biota of these ecosystems is virtually unknown. The soils in savannas are poor in nutrients, very acidic, and subject to drought, and under these conditions, arbuscular mycorrhizal fungi (AMF) are likely to play a key role on plant nutrition and improving soil structure. In this study, we surveyed AMF communities in five savanna locations in Roraima state, Northern Brazil. AMF species were identified using two approaches: field collected spores and trap cultures. Twenty-three AMF species were identified, including 21 species in field samples, 8 species in trap cultures, of which 15 and 2 were unique to field and trap culture samples, respectively. Gigaspora margarita, Dentiscutata heterogama, and Glomus sp1 were the most frequent species recovered from all locations. AMF communities were dominated by members of Gigasporaceae that accounted for 50 to 87% of the total species richness within each location. Spore numbers differed across locations and ranged from 5 to 25 spores 100 cm?3 soil. Redundancy analysis indicated that soil organic matter was the only selected predictor among soil parameters and correlated positively with occurrence of Glomus heterosporum. We conclude that savannas in Roraima harbor a high sporulating AMF species richness with communities dominated by members of Gigasporaceae and that organic carbon is an important edaphic factor influencing AMF community composition in this ecosystem.  相似文献   

4.
Ferriferous savannas, also known as cangas in Brazil, are nutrient-impoverished ecosystems adapted to seasonal droughts. These ecosystems support distinctive vegetation physiognomies and high plant diversity, although little is known about how nutrient and water availability shape these ecosystems. Our study was carried out in the cangas from Carajás, eastern Amazonia, Brazil. To investigate the N cycling and drought adaptations of different canga physiognomies and compare the findings with those from other ecosystems, we analyzed nutrient concentrations and isotope ratios (δ13C and δ15N) of plants, litter, and soils from 36 plots distributed in three physiognomies: typical scrubland (SB), Vellozia scrubland (VL), and woodland (WD). Foliar δ15N values in cangas were higher than those in savannas but lower than those in tropical forests, indicating more conservative N cycles in Amazonian cangas than in forests. The lower δ15N in savanna formations may be due to a higher importance of mycorrhizal species in savanna vegetation than in canga vegetation. Elevated δ13C values indicate higher water shortage in canga ecosystems than in forests. Foliar and litter nutrient concentrations vary among canga physiognomies, indicating differences in nutrient dynamics. Lower nutrient availability, higher C:N ratios, and lower δ15N values characterize VL, whereas WD is delineated by lower δ13C values and higher soil P. These results suggest lower water restriction and lower P limitation in WD, whereas VL shows more conserved N cycles due to lower nutrient availability. Differences in nutrient and water dynamics among physiognomies indicate different ecological processes; thus, the conservation of all physiognomies is required to ensure the maintenance of functional diversity in this unique ecosystem.  相似文献   

5.
As with many grasslands globally, the Highveld grasslands of South Africa are tree-less, despite having a climate that can support tree growth. Models predict that fire maintains these grasslands. The question arises as to why fire-tolerant savanna trees do not survive in these ecosystems? Savanna tree survival in mesic areas is restricted by demographic bottlenecks, specifically limitations to sapling-escape from fire. It was hypothesised that ancient highly leached soils from grassland areas would prevent saplings from growing fast enough to escape the fire-trap. Growth rates of savanna tree seedlings (Acacia karroo Hayne and Acacia sieberiana Burtt Davy) were measured in a common garden experiment using soils from ten sites collected along a savanna-grassland continuum. Soils from grassland sites were relatively nutrient-poor compared to those from savannas with lower pH, and associated cations. A. sieberiana growth rates responded to pH and these nutrients, whereas A. karroo growth was less strongly linked to specific nutrients. Even so, both species accumulated more biomass when grown in soils from savanna sites compared to grassland sites. An exception was a low elevation low nutrient savanna site that resulted in poor growth, yet sustains high tree biomass in situ. Differences between growth in grassland and savanna soils were small. They may contribute to, but are unlikely to explain, the treeless nature of these grasslands.  相似文献   

6.
7.
Australian species of the genus Acacia are amongst the most invasive trees. As nitrogen fixers, they are able to invade oligotrophic ecosystems and alter ecosystem functioning to their benefit. We aimed to answer three questions: How does early Acacia invasion influence nitrogen and light in a sandy savanna? How does early Acacia invasion impact biodiversity? Does early invasion alter ecosystem functioning towards the dominance of Acacia? We analyzed (using generalized linear mixed models and richness estimators) paired plots focused on plants of Acacia mangium (Fabaceae) and plants of Marcetia taxifolia (Melastomataceae) by taking hemispherical photos and sampling plants, leaves and soil for measurements of light, richness, leaf nitrogen, leaf δ15N, soil nitrogen and soil coarse sand. The results suggest that early Acacia invasion alters the control of soil and of leaf nitrogen and increases shading, enabling a much wider range of light variation. The δ15N results suggest that the nitrogen taken up by Acacia is transferred to neighboring plants and influences the light environment, suggesting facilitation. The enrichment of plant species observed during early Acacia invasion is consistent with the wider range of light variation, but the forecasted leaf nitrogen conditions during the established phase of Acacia invasion might cause loss of light-demanding species because of increased shading. If early Acacia invasion turns into an established phase with highly increased shading, Acacia seedlings might be favored and ecosystem functioning might change towards its dominance.  相似文献   

8.
Traditional explanations of tree-grass coexistence in African savannas are based on competition between these growth forms or demographic bottlenecks of trees maintained by fire or mammalian browsers. Perturbation of their “balance” may result in an alternate system state of woody encroachment. Invertebrate herbivory has never been offered as an explanation. We developed a consumer-resource model which illustrated that annual irruptions of a lepidopteran (Imbrasia belina), known as mopane worm, can determine the tree-grass balance of semi-arid Colophospermum mopane savanna in southern Africa. Model performance was sensitive to the abundance, hence mortality, of mopane worms, owing to their complete defoliation of tree leaf biomass resulting in altered competitive relations between trees and grasses. Invertebrate herbivores have been recognized in other systems as agents for effecting a state change of host tree populations; this modeling study offers a first indication of such a role for the well-researched tree-grass relations of African savannas.  相似文献   

9.
Plant species generate specific soil communities that feedback on plant growth and competition. These feedbacks have been implicated in plant community composition and dispersion. We used Lactuca sativa and its wild progenitor Lactuca serriola to test the hypotheses that separate Lactuca species generate unique soil communities and that these soil communities differentially influence host, and neighboring, plant growth and competition. We grew each Lactuca in competition with the other, in sterile and non-sterile soils. We then examined the growth of each Lactuca species in sterile, non-sterile, and preconditioned soil. Finally, we used TRFLP techniques to explore whether the two Lactuca species generate significantly different bacterial communities in their rhizosphere soils. L. sativa proved to be the stronger competitor of the two species. However, sterilization increased the competitive effect of L. serriola background competitors. The growth experiment showed a significant effect on plant species, soil treatment, and the interaction of the two. Preconditioning soil caused reduced growth in both Lactuca species. Only L. serriola showed significantly increased growth in sterile soils. Our TRFLP analysis showed that the L. sativa soil community was significantly less diverse and that soil preconditioning had the largest impact on the community composition. These results show that Lactuca serriola’s rhizosphere communities generate a stronger negative feedback for plant growth than do the communities associated with L. sativa. Our study suggests that selection for plants that are able to grow in dense monoculture may have released Lactuca from species-specific negative soil feedbacks. This has important implications for both agriculture and the evolution of invasive plant species.  相似文献   

10.
11.
With rapid urban expansion, biodiversity conservation and human asset protection often require different regimes for managing wildfire risk. We conducted a controlled, replicated experiment to optimise habitat restoration for the threatened Australian pink-tailed worm-lizard, Aprasia parapulchella while reducing fire fuel load in a rapidly developing urban area. We used dense addition of natural rock (30 % cover) and native grass revegetation (Themeda triandra and Poa sieberiana) to restore critical habitat elements. Combinations of fire and herbicide (Glyphosate) were used to reduce fuel load and invasive exotic species. Rock restoration combined with herbicide application met the widest range of restoration goals: it reduced fire fuel load, increased ant occurrence (the primary prey of A. parapulchella) in the short-term and increased the growth and survival of native grasses. Lizards colonised the restored habitat within a year of treatment. Our study documents an innovative way by which conflicts between biodiversity conservation and human asset protection can be overcome.  相似文献   

12.
Transition zones between forest and savanna in northern South America are important areas for improving our understanding of ecosystem dynamics and climate change. The uniquely available mid-Holocene sediment deposits from the Serra do Tepequém plateau in Roraima State, northwestern Brazil, were used to analyze past forest-savanna dynamics through pollen, spores, microcharcoal and loss on ignition (LOI). In this newly studied landscape, two distinct periods of vegetation, fire and climate dynamics have been recorded. The first phase from ca. 7,570 to 6,190 cal bp, with the dominance of savanna vegetation in particular with Poaceae and Cyperaceae and some small forest patches with Moraceae/Urticaceae, Alchornea and Schefflera, indicates a relatively dry period. Based on the microcharcoal concentration and influx data, frequent regional fires occurred at that time. The second phase from ca. 6,190 to 4,900 cal bp shows a change in the vegetation composition with an increase of Ilex, Schefflera and Fabaceae. In this period forest expanded, while savanna became reduced, reflecting an increase of wetter conditions. The fire frequency was markedly lower. The first occurrence of Mauritia flexuosa palm was at ca. 7,300 cal bp and an early expansion occurred at around 6,600 cal bp. This early expansion of M. flexuosa showed a development that was in opposition to the increase of fire and savanna expansion found in other regions in northern South America. The increase of wetter conditions in Serra do Tepequém in the mid-Holocene confirms other results found in savannas of Colombia and Venezuela between 7,000 and 6,600 cal bp.  相似文献   

13.
Alteration of soil nutrient dynamics has recently garnered more attention as both a cause and an effect of plant invasion. This project examines how nutrient dynamics are affected by native (Elymus elymoides, Pseudoroegneria spicata, and Vulpia microstachys) and invasive (Aegilops triuncialis, Agropyron cristatum, Bromus tectorum, and Taeniatherum caput-medusae) grass species. This research questions whether natives and invasives differ in their effects on nutrient dynamics. A greenhouse study was conducted using two field-collected soils. Effects on nutrient dynamics were compared using an integrated index that evaluates the total nutrients in soil and in plant tissue compared to an unplanted control. With this index, we evaluated whether soil nutrients increased or decreased as a result of plant growth, controlling for plant uptake. We found no consistent support for our hypothesis that invasive grass species as a group influence nutrient dynamics differently than native grass species as a group. Our results indicate species-specific effects on nutrient dynamics. Alteration of nutrient dynamics is not a trait shared by all of the invasive grass species in our study. However, alteration of nutrient dynamics may be a mechanism by which some individual species increase their invasive potential.  相似文献   

14.
Desert evergreen shrubs, which are adapted to low-fertility ecosystems, generally exhibit limited responses to increased nutrient availability and tend to absorb and store nutrients rather than synthesize new tissues. The objective of this work was to analyze the effect of nitrogen fertilization combined with soil water availability on growth, nitrogen content, and nitrogen use efficiency on four shrubs (Atriplex lampa, Capparis atamisquea, Larrea cuneifolia, and Senecio subulatus) from the Monte Desert. In a 120-day glasshouse experiment in Mendoza, Argentina, we compared the effects of three levels of nitrogen fertilization combined with two levels of water availability on seedling biomass, nitrogen content, water potential, and nitrogen use efficiency. Fertilization induced a higher biomass on A. lampa under high water availability and on C. atamisquea regardless of water level. Shoot:root ratios of these two species were lower under water stress without fertilization. On the other hand, L. cuneifolia presented lower root biomass and lower water potential with N fertilization. All species when fertilized exhibited higher nitrogen content and lower nitrogen use efficiency. Also, A. lampa and L. cuneifolia presented higher nitrogen content under water stress conditions. In conclusion, some desert shrubs (A. lampa and C. atamisquea) were able to take advantage of increased nitrogen availability producing more biomass. Understanding seedlings response to nitrogen and water availability on arid lands is critically important to develop adequate revegetation techniques of degraded areas.  相似文献   

15.
Understanding the factors limiting population growth is crucial for species management and conservation. We assessed the effects of seed and microsite limitation, along with climate variables, on Helianthemum squamatum, a gypsum soil specialist, in two sites in central Spain. We evaluated the effects of experimental seed addition and soil crust disturbance on H. squamatum vital rates (survival, growth and reproduction) across four years. We used this information to build integral projection models (IPMs) for each combination of management (seed addition or soil disturbance), site and year. We examined differences in population growth rate (λ) due to management using life table response experiments. Soil crust disturbance increased survival of mid to large size individuals and germination. Contributions to λ of positive individual growth (progression) and negative individual growth (retrogression) due to managements varied among years and sites. Soil crust disturbance increased λ in the site with the highest plant density, and seed addition had a moderate positive effect on λ in the site with lowest plant density. Population growth rate (λ) decreased by half in the driest year. Differences in management effects between sites may represent a shift from seed to microsite limitation at increasing densities. This shift underscores the importance of considering what factors limit population growth when selecting a management strategy.  相似文献   

16.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

17.
The catabolism of choline as a source of nitrogen in budding yeasts is thought to proceed via the intermediates trimethylamine, dimethylamine and methylamine before the release of ammonia. The present study investigated the utilisation of choline and its downstream intermediates as nitrogen sources in the yeast Scheffersomyces stipitis using a reverse genetics approach. Six genes (AMO1, AMO2, SFA1, FGH1, PICST_49761, PICST_63000) that have previously been predicted to be directly or indirectly involved in the catabolism of methylated amines were individually deleted. The growth of each deletion mutant was assayed on minimal media with methylamine, dimethylamine, trimethylamine or choline as the sole nitrogen source. The two amine oxidase-encoding genes AMO1 and AMO2 appeared to be functionally redundant for growth on methylated amines as both deletion mutants displayed growth on all nitrogen sources tested. However, deletion of AMO1 resulted in a pronounced growth lag on all four methylated amines while deletion of AMO2 only caused a growth lag when methylamine was the sole nitrogen source. The glutathione-dependent formaldehyde dehydrogenase-encoding gene SFA1 was found to be absolutely essential for growth on all methylated amines tested while deletion of the S-formylglutathione hydrolase gene FGH1 caused a pronounced growth lag on dimethylamine, trimethylamine and choline. The putative cytochrome P450 monooxygenase-encoding genes PICST_49761 and PICST_63000 were considered likely candidates for demethylation of di- and trimethylamine but produced no discernable phenotype on any of the tested nitrogen sources when deleted. This study revealed notable instances of genetic redundancies in the choline catabolic pathway, which are discussed.  相似文献   

18.
Large areas in the extra-Andean region in the forest - steppe ecotone in “Northwestern Argentinean Patagonia” have been replaced by plantations of the exotic conifer Pinus ponderosa which modify soils physical and chemical factors and alter the biodiversity. Considering that in the region occur saprophytic soilborne actinobacteria that play important role as the fixation of atmospheric nitrogen (N2) in symbiosis with native plant species and the production of bioactive molecules in plants rhizosphere, we aimed to study the effect of the plantation on the abundance of the N2 fixer Frankia and on the genus diversity of cultivable rhizospheric actinobacteria. The study was performed with soils of six paired sites with pine plantations and natural neighbor areas (including steppes or shrublands). Abundance of infective Frankia was estimated by evaluating the nodulation capacity of soils, through a plant bioassay using Ochetophila trinervis as trap plant. Isolation trials for saprophytic actinobacteria were performed by applying chemotactic and successive soils dilutions methods. We concluded that P. ponderosa afforestation affect soil actinobacteria. This was mainly evidenced by a decrease in the Frankia nodulation capacity in O. trinervis, which was related to plantation age, to lower soil carbon and nitrogen content, higher available phosphorus, and to a slight decrease in soils pH. Pine plantation influence on the cultivable saprophytic actinobacteria was less clear. The study highlights the importance of soils as source of Frankia and rhizospheric actinobacteria in relation to disturbance caused by pine plantation in natural environments with native actinorhizal plant species.  相似文献   

19.
The study investigated interspecific agonistic behavior of Macrotermes gilvus Hagen (Isoptera: Termitidae: Macrotermitinae) against three economically important subterranean termites in the Philippines, viz., Coptotermes gestroi Wasmann, Nasutitermes luzonicus Oshima and Microcerotermes losbanosensis Oshima. Termite-termite interactions after a 1:1 pairing experiment showed that M. gilvus workers and soldiers were highly aggressive against C. gestroi, N. luzonicus and M. losbanosensis leading to severe injury or death of the opponent termite species in a short period of time. The levels of agonism were caste and species specific. Worker termites of M. gilvus showed an equally aggressive behavior as soldiers contributing to the high mortality of opponent species used in this study. It is likely that the highly aggressive behavior of M. gilvus limits foraging activity of C. gestroi, N. luzonicus and M. losbanosensis around in-ground bait stations contributing to the low success of termite baits containing chitin synthesis inhibitors in the Philippines.  相似文献   

20.
Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the abundances of genes involved in denitrification (nirS, nirK, nosZ). Potential nitrification and denitrification activities were also measured, and increases in nitrification were found in soils towards the end of succession, whereas denitrification became maximal in soils at the intermediate stages. The nifH, nirK and nirS gene markers revealed increases in the sizes of the respective functional groups towards the intermediate stage (35 years), remaining either constant (for nifH) or slightly declining towards the latest stage of succession (for nirK and nirS). Moreover, whereas the AOB abundance peaked in soils at the intermediate stage, that of AOA increased linearly along the chronosequence. The abundance of nosZ was roughly constant, with no significant regression. The drivers of changes in abundance and structure were identified using path analysis; whereas the ammonia oxidizers (AOA and AOB) showed patterns that followed mainly N availability, those of the nitrogen fixers followed plant diversity and soil structure. The patterns of denitrifiers were group-dependent, following the patterns of plant diversity (nirK and nirS) and belowground shifts (nosZ). The variation observed for the microbial groups associated with the same function highlights their differential contribution at different stages of soil development, revealing an interplay of changes in terms of niche complementarity and adaptation to the local environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号