首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

2.

Background  

Cycloheximide is a protein synthesis inhibitor that acts specifically on the 60S subunit of eukaryotic ribosomes. It has previously been shown that a short incubation of Dictyostelium discoideum amoebae in cycloheximide eliminates fluid phase endocytosis.  相似文献   

3.

Background  

Altruism can be favored by high relatedness among interactants. We tested the effect of relatedness in experimental populations of the social amoeba Dictyostelium discoideum, where altruism occurs in a starvation-induced social stage when some amoebae die to form a stalk that lifts the fertile spores above the soil facilitating dispersal. The single cells that aggregate during the social stage can be genetically diverse, which can lead to conflict over spore and stalk allocation. We mixed eight genetically distinct wild isolates and maintained twelve replicated populations at a high and a low relatedness treatment. After one and ten social generations we assessed the strain composition of the populations. We expected that some strains would be out-competed in both treatments. In addition, we expected that low relatedness might allow the persistence of social cheaters as it provides opportunity to exploit other strains.  相似文献   

4.
Dictyostelium discoideum (Dd) 1-H vegetative amoebae exposed to cAMP differentiate into mature stalk cells within 48 h [6]. It was of interest to monitor the patterns of glycoprotein synthesis in the amoebae during the first 5 h of exposure to cAMP and phosphate buffer (PB) controls. Following the exposure period the amoebae were labeled with -[6-3H]fucose. It was determined by both silver grain counts of autoradiographs and scintillation spectroscopy that within minutes cAMP effects an inhibition of [3H]fucose incorporation. However, by 5 h of exposure both experimentals and controls lose a major amount of their labeling capacity based upon the initial PB control value. Vegetative amoebae exposed to cAMP mimics the sparse labeling found in prestalk cells. Prestalk cells synthesize cellulose as a result of cAMP-induced gluconeogenesis and consequently glycoprotein synthesis is reduced. Cellular interactions promoted by cAMP appears to initiate prestalk cell differentiation during the pre-aggregation phase of development. This event is accompanied by a loss in the ability of the aggregating cells to synthesize glycoprotein.  相似文献   

5.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

6.
Pretreatment of proliferating D. discoideum amoebae with 10 mM butyrate for at least 8 h (one duplicating time) induced a reversible and dose dependent premature expression of several developmental parameters when the cells were starved in the absence of the fatty acid. The aggregative phase of the morphogenetic cycle was reduced in 2 h and the appearance of mature fruiting bodies and spores took place 4 h earlier as a result of butyrate pretreatment. Some developmentally regulated proteins, such as contact-sites A, cell surface lectins and cyclic AMP phosphodiesterase were also expressed 2 h earlier in butyrate pretreated cells than in controls. The level of extracellular cyclic AMP was reduced in butyrate pretreated cells, while other parameters of cyclic AMP metabolism were not affected. Butyrate also caused a partial inhibition of growth and the hyperacetylation of histone H4 in growing amoeba. These results suggest that butyrate acts as an inducer of differentiation in D. discoideum and can therefore be used as an experimental tool in order to explore regulatory mechanisms operating in slime mold differentiation.Abbreviations MES 2-N-morpholinoethanesulfonate - EDTA ethylendiaminotetracetate - TCA trichloroacetate - DTT dithiothreitol - SDS sodium dodecylsulfate  相似文献   

7.
The occurrence of a cytosolic cAMP-binding protein of an approximate molecular weight of 41,000 daltons was monitored in vegetative and developing amoebae of Dictyosteliumdiscoideum by the use of the photoaffinity probe (32P) 8N3-cAMP. There was a large apparent increase in the amount of this binding protein during development; its molecular weight remained constant, if appropriate methods were employed for the disruption of the amoebae. Comigration during electrophoresis on two-dimensional gels identifies this cAMP-binding protein, photoaffinity-labeled in crude extracts, as the regulatory subunit of the cAMP-dependent protein kinase of D.discoideum.  相似文献   

8.
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency‐dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types.  相似文献   

9.
The rap1 gene of Dictyostelium discoideum is a member of the ras-gene superfamily of low molecular weight GTPase proteins. The rapl gene is expressed both during growth and development in D. discoideum. To examine the action of the Rapl protein in D. discoideum, the rap1 cDNA was expressed under the control of the inducible discoidin promoter. Treatment with conditioned media, which induces the discoidin promoter, increased Rap1 protein levels in vegetative cells approximately six fold. Overexpression of the Rapl protein correlated with the appearance of morphologically aberrant vegetative amoebae: cells were extensively spread and flattened. The distribution of F-actin was altered in these cells, with an increase in actin staining around the cell periphery. Induction of the discoidin promoter by starvation in the rapl transformants also resulted in spread flat cells. When starved D. discoideum amoebae are refed with HL5 media, the cells rapidly respond by rounding up. By contrast, the rapl transformant cells showed a pronounced delay in rounding up. Rapid tyrosine phosphorylation of a p45 protein occurred in both control cells and the rapl transformant upon refeeding, implying that the signal transduction pathway leading to tyrosine phosphorylation remained functional in the rapl transformant. We propose that the Rapl protein functions in the regulation of cell morphology in D. discoideum. © 1993Wiley-Liss, Inc.  相似文献   

10.
Summary Mitochondria in non-starved giant amoebae, Pelomyxa carolinensis, contain tubules lying at random in the matrix. Many mitochondria in starved amoebae have enlarged tubules aligned in a zigzag pattern. Tubules within the zigzag region are separated by very little matrix material. Some of these altered mitochondria are found in 70% of amoebae starved for only 24 hours, and in nearly all P. carolinensis starved for 8 days or longer. The percentage of such altered mitochondria increases from zero in most well-fed amoebae, to about 60% after two weeks of continuous starvation. Most P. carolinensis starved at 25° C survive less than three weeks. Microfilament bundles are observed in the matrix of some mitochondria in amoebae starved for more than two days.Work supported by the U. S. Atomic Energy Commission.The authors acknowledge the assistance of Miss Doris Jean Buer and Miss Patricia Ann Sustarsic.  相似文献   

11.
Chemotactic stimulation of Dictyostelium discoideum amoebae with pulses of cAMP or folate causes a series of rapid changes in the amount of actin protein associated with the Triton-insoluble cytoskeleton. The first of these changes occurs within 3 sec. of stimulation. The changes are dose-dependent and are within the physiological range of concentrations of cAMP or folate eliciting chemotaxis. These effects on the cytoskeleton show a pattern of regulation during development matching the respective chemotactic sensitivities of D. discoideum to cAMP (most sensitive at 4–8 hr of development) and to folate (rapidly decreasing sensitivity over 0–4 hr). At twelve hr, however, the responsiveness to folate unexpectedly reappears, suggesting a function of folate later in development than previously reported.  相似文献   

12.
Prior to completion of aggregation and the beginning of multicellular differentiation, the amoebae of Dictyostelium discoideum assume two distinct phases with characteristic changes in cellular movement, shape and adhesiveness. These two phases of amoeboid behaviour have been studied with respect to the quantitative analysis of the intracellular adenosine phosphates, using both enzymatic and chromatographic techniques. A higher intracellular ATP level and energy-charge has been found for the actively moving, non-adhesive amoebae as compared to the flattened, mutually adhesive cells. The importance and possible role of ATP in regulating amoeboid form, movement and cell adhesion is discussed.  相似文献   

13.
Summary The movement of slime-mold amoebae under isotropic conditions in two dimensions is represented as a Correlated Walk with straight steps of variable length. The steps are correlated via the angle turned through from step to step. The hypotheses and predictions of the model compare favourably with experimental data for Dictyostelium discoideum amoebae.This work was supported in part by an M. R. C. Grant # MA 5340.  相似文献   

14.
A method was devised to measure the adhesiveness to the substratum of the amoebae of the cellular slime mold, Dictyostelium discoideum, and measurements were conducted with the cells at various stages of development. The adhesiveness of the vegetative amoebae was low, and remained unchanged as long as they fed on bacteria. During the transition from the vegetative stage to the interphase (due to the cessation of feeding), the adhesiveness increased rapidly, and afterwards continued to rise, as development proceeded. The adhesiveness of the interphase amoebae was greatly decreased by the treatment with proteolytic enzymes, lipase, and acid phosphatase. These indicate that accumulation of some substance(s) such as lipoprotein on the cell surface is responsible for the increase in adhesiveness during the interphase. EDTA and periodic acid had no noticeable effect on the adhesiveness of the interphase amoebae. EDTA, however, decreased the adhesiveness in co-operation with trypsin or lipase. The cells disaggregated from the anterior part of the migrating slug showed higher adhesiveness than those from the posterior part. The adhesiveness of either cells was higher than that of the interphase amoebae.  相似文献   

15.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

16.
Mitochondria have been isolated from D. discoideum amoebae in which respiration is coupled to ADP phosphorylation. P:O ratios and respiratory control ratios have been obtained for a number of metabolites. In rat liver mitochondria, glutamate is oxidized almost exclusively by a respiration-dependent cyclic transamination pathway, in which glutamate is converted to aspartate. When D. discoideum amoebae are incubated with glutamate alone, aspartate does not accumulate appreciably. Furthermore, when the mitochondria are incubated with glutamate plus malonate at a concentration sufficient to inhibit respiration, their utilization of glutamate is depressed only slightly. Thus, it appears that glutamate oxidation within the mitochondria of D. discoideum amoebae does not, for the most part, proceed by the cyclic transamination pathway.  相似文献   

17.
An unknown substance found in bacteria (Escherichia coli) is especially effective in attracting the vegetative amoebae of the cellular slime mold, Dictyostelium discoideum. However, the aggregating amoebae are not attracted to it at all. On the other hand, the vegetative amoebae show very little chemotactic response to cyclic adenosine monophosphate (cyclic AMP), whereas the aggregating amoebae are exceptionally responsive to it. It is suggested that the new factor may be used in food seeking, whereas cyclic AMP, the chemotactic substance responsible for aggregation, is the acrasin of this species. The important point is that the amoebae are differentially stage-specific in their responses to these two chemotactic agents.  相似文献   

18.
M. Maniak 《Protoplasma》1999,210(1-2):25-30
Summary The cells ofDictyostelium discoideum are soil amoebae with a simple endocytic pathway: Particles or fluid are taken up at the plasma membrane in a process dependent on the actin cytoskeleton. After rapid acidification and subsequent neutralisation of the food vacuoles during which breakdown of the contents occurs, indigestible remnants are exocytosed. This tight coupling between endocytosis and exocytosis is thought to maintain membrane homeostasis. In spite of the apparent overall difference between the endocytic pathways of mammalian cells andD. discoideum, conserved proteins are involved in individual steps of endocytic transport, possibly indicating that in mammalian cells it is only the routing of marker that has evolved from a simple transit to a complex, branched pathway.  相似文献   

19.
Cellulose is a major and important component of the extracellular matrix during the development of Dictyostelium discoideum. Upon starvation, solitary amoebae of D. discoideum gather and form fruiting bodies in which cells differentiate into stalk cells and spores. The stalk tubes and walls of spores and stalk cells are made of cellulose. In the genus Acytostelium, however, all cells are destined to become spores and the stalks comprise only a cellulose tube, suggesting species‐specific regulation of cellulose synthesis. In this study, we cloned a putative cellulose synthase gene (cesA) of Acytostelium subglobosum and performed comparative analyses with the D. discoideum cellulose synthase gene (dcsA). Although the deduced amino acid sequences were highly conserved between cesA and dcsA, the numbers of transmembrane spans preceding the catalytic domain were dissimilar; 2 and 3, respectively. Since ectopic expression of cesA in dcsA?null cells failed to restore the developmental defects of the mutant, we constructed a series of chimerical genes for complementation analyses and found that the catalytic domain of cesA was functional in D. discoideum cells if the preceding transmembrane region was swapped with dcsA. The non‐functional products that contained the cesA‐derived transmembrane region were localized to lysosomes. These results indicate that the transmembrane region of cellulose synthase is essential for proper accumulation of cellulose during the development of D. discoideum and that its differential localization in A. subglobosum may be related to the characteristic morphogenesis in this species.  相似文献   

20.
Single amoebae of D. discoideum are phosphorylated in the presence of external ATP. Phosphorylation is catalyzed by a cAMP independent cell membrane bound protein kinase. As a result of phosphorylation cell aggregation is induced and the chemotactic sensitivity of the amoebae to a cAMP gradient decreased. Cell membrane phosphorylation may be involved in triggering cell aggregation in vivo. The fact that the number of free phosphorylable sites per cell decreases at the onset of aggregation gives support to this hypothesis. The existence of a plasma membrane bound phosphoprotein phosphatase suggests a possible regulator role for this enzyme on the phosphorylation of the amoebae. Finally, ATP inhibits intercellular contact sites outside the aggregation center. Despite this inhibiting effect on cell adhesiveness, amoebal movement toward an aggregation center maintains its normal periodicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号