首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Potato mop-top virus (PMTV) was best detected in field soils by air-drying them for more than a week before remoistening and growing seedlings of Nicotiana tabacum or N. debneyi for a 6–10 week period. Infection of N. tabacum was assessed by inoculating sap from roots and shoots to Chenopodium amaranticolor. Similar inoculations from N. debneyi were far less convenient for detecting PMTV than recording leaf symptoms, but slightly more efficient. Air-dry soil retained PMTV infectivity for 9 months, when passed through a 50 μ sieve or when diluted with 103 but not 104 parts of steamed soil. Tobacco seedlings were not infected when their roots were steeped in PMTV-containing tobacco sap. Infective soils contained Spongospora subterranea, spore balls of which resisted air-drying for more than a year and passed a 50 μ sieve. Roots of susceptible seedlings were infected with PMTV when exposed to spore balls of S. subterranea taken from powdery scabs on PMTV-infected potato tubers, or to suspensions obtained by steeping, in nutrient solution, roots infected with virus-carrying cultures of S. subterranea. Plants in several families were hosts of S. subterranea, but probabilities of infection when exposed to spore balls differed greatly between families and only species of Solanaceae were good hosts. The ten species infected with PMTV when grown in infective soil or when exposed to spore balls of S. subterranea taken from PMTV-infected potato tubers are all members of this family. PMTV seems to be carried internally in S. subterranea spore balls and survived in them for at least a year. PMTV was transmitted by S. subterranea to Arran Pilot potato, causing yellow blotches in some leaves and spraing in many tubers. However, when newly infected with PMTV in the field, not all Arran Pilot tubers developed spraing. Also, although many spraing-affected or symptomless but PMTV-infected tubers carried PMTV-containing spore balls of S. subterranea, powdery scabs were rarely found near the centres of the rings of primary spraing. PMTV became established in virus-free soil when PMTV-infected tubers carrying S. subterranea were planted as ‘seed’ but not when virus-free tubers bearing powdery scabs were used. 5. subterranea seems the main, and possibly the only, vector of PMTV in the soils examined. S. subterranea did not transmit potato aucuba mosaic virus from potato to N. debneyi or Capsicum annuum.  相似文献   

2.
Experiments were done to assess the role of seed-transmission in the dissemination of peanut clump virus (PCV) in groundnut (Arachis hypogea L.), and the usefulness of enzyme-linked immunosorbent assay (ELISA) for detecting the virus in infected groundnut seed. The virus was present in 7.5% of seedling progeny from infected plants and could be detected in 16.5% of the seeds by ELISA. When groundnut seeds were grown in a field contaminated by the virus, it was shown that by roguing the infected plants, only 0.1% of the seeds from the remaining plants contained the virus. It was also established that the level of contamination of seeds by the virus was inversely proportional to the seed size.  相似文献   

3.
A disease characterised by severely stunted plants with small dark green leaves was found in groundnut (Arachis hypogaea) in sandy soils in Punjab State, India. The disease occurred in patches in the field and reappeared in the same positions in succeeding groundnut crops. Plants infected early did not produce mature pods. Seeds sown in soil collected from infected fields produced plants with typical disease symptoms. Phaseolus vulgaris cv. Local and Chenopodium quinoa were found to be good diagnostic hosts. The disease was shown to be caused by a rod-shaped virus c. 24 nm in diameter with predominant particle lengths of c. 249 and 184 nm when stained in uranyl acetate. The virus, named Indian peanut clump virus (IPCV), resembled peanut clump virus (PCV) reported from W. Africa in symptomatology on groundnuts, particle morphology and soil-borne nature. However, it is not serologically related to two W. African PCV isolates tested, or to tobacco rattle (PRN and CAM strains) or pea early browning virus (Dutch isolate) in microprecipitin, enzyme linked immunosorbent assay and immunosorbent electron microscopy tests.  相似文献   

4.
Transmission of different nepoviruses through chickweed (Stellaria media) seed was differently affected by ambient temperature during seed production. Raspberry ringspot and tomato black ring (Scottish isolate) viruses were similarly and frequently transmitted at 14 , 18 and 22 oC, whereas arabis mosaic virus was transmitted most frequently at 14 oC, and strawberry latent ringspot and tomato black ring (German isolate) viruses at 22 oC. When infected by seed-borne nepoviruses, seedlings of S. media and other species were symptomless at 15–25 oC, and the viruses were therefore detected by inoculating sap to Chenopodium quinoa indicator plants. However, typical symptoms of arabis mosaic and tomato black ring viruses were induced by growing Nicotiana tabacum, N. clevelandii and C. quinoa seedlings infected with seed-borne virus at 33–37 oC during the third and fourth weeks after sowing, preceded and followed by periods at 15–25 oC. The proportion of N. tabacum seedlings developing symptoms was the same as that of untreated seedlings yielding sap-transmissible virus. Seed transmissibility of pseudo-recombinant isolates of raspberry ringspot and tomato black ring viruses, containing RNA-i from one virus strain and RNA-2 from another strain, depended greatly on the transmissibility of the strain contributing RNA-i. The source of RNA-2 had an additional but smaller influence. The satellite RNA (RNA-3) of tomato black ring virus was seed-transmitted in S. media and its occurrence in cultures did not affect the frequency of transmission of the virus. Results of testing the infectivity of extracts of seed from infected mother plants suggested that failure of seed transmission reflected failure to become established in the seed, not subsequent inactivation. Whereas seed transmissibility of raspberry ringspot virus is primarily dependent on information carried in RNA-i, transmissibility by nematode vectors, another property of major ecological importance, is determined by RNA-2. In the field, selection pressures presumably can act independently on the two parts of the genome but evidence was also obtained of selection for mutual compatibility of RNA-i and RNA-2.  相似文献   

5.
Two isolates of groundnut rosette virus from East Africa (GRVE1 and GRVE2) and from West Africa (GRVW1 and GRVW2) were transmitted by Aphis craccivora obtained from West Africa. A third isolate from West Africa (GRVW3) was not transmitted by A. craccivora from three widely separated sources. GRVW1, GRVW2 and GRVW3 caused leaf-symptoms in groundnut of a mosaic pattern in light and dark green. GRVE1 and GRVE2 caused chlorosis or chlorosis and leaf distortion as well as mosaic symptoms. Groundnut plants with GRVW1 could not be infected by means of aphids with GRVE1, and GRVE1 gave similar protection against GRVW1, which suggests that they are strains of the same virus. All isolates were transmissible manually from groundnut to groundnut (Arachis hypogea), Trifolium incarnatum and T. repens, and caused systemic infection. Inoculated Nicotiana clevelandii and N. rustica developed symptoms but virus could not be recovered from them. Chenopodium amaranticolor, C. hybridum and C. quinoa showed local lesions on inoculated leaves. Virus could be acquired by aphids from groundnut or Trifolium repens infected by means of aphids, but not from those infected by manual inoculation. Virus could not be recovered from T. incarnatum manually or by aphids, but was transmitted by cleft-grafting from clover to groundnut. Saps extracted in borax buffer plus zinc sulphate at pH 9 from plants infected with GRVW1 and GRVE1 remained infective at 18° C. for 1 week, and at — 20° C. for up to 4 weeks. Virus could be recovered from frozen leaves. Buffered saps lost infectivity when heated above 50° C. for 10 min.; most were still infective when diluted 1/10 and some at 1/100. Electron micrographs of partially purified preparations contained spherical particles 25–28 mμ in diameter. There were usually only about five per microscope field and they resembled those of some other viruses.  相似文献   

6.
Resting spores (cystosori) of Polymyxa graminis, selected from roots of barley plants infected with barley yellow mosaic virus (BaYMV), were used to start mono-fungal sand cultures. Out of 20 attempts using over 800 cystosori, P. graminis became established in 12, and in two of these BaYMV symptoms also occurred. BaYMV was detected by ELISA in extracts of dried roots heavily infected with cystosori and in zoospores of P. graminis. Calculations suggested that, on average, each zoospore carried less than 100 virus particles. In two virus acquisition experiments, non-viruliferous isolates of P. graminis failed to acquire BaYMV from roots of mechanically-inoculated plants. In two further experiments, non-viruliferous isolates were grown on rooted tillers produced from healthy plants and those infected with BaYMV by either vector or mechanical inoculation. Zoospores and cystosori of P. graminis subsequently transmitted the virus, but only from plants where it had been introduced by the vector. Repeated mechanical transmission appeared to have selected a strain of virus that could not be acquired and/or transmitted by the vector. The results provide convincing evidence that P. graminis is a vector of BaYMV but suggest that, in natural populations, only a small proportion of spores may be viruliferous.  相似文献   

7.
Intensive survcys of groundnut virus diseases were carried out in Senegal from 1986 to 1990. Peanut clump virus (PCV; furovirus group) was detected in several regions in groundnuts (Arachis hypogaea), showing typical symptoms namely, small dark green leaves, short petioles and internodes, and reduced shoot size resulting in a dwarfed and bushy appearance (clumping) of the infected plants. PCV was also detected in groundnuts exhibiting variable symptoms like chlorotic leaf spots, specking, chlorotic rings or ringspots, line patterns, vein yellowing, mottle or light mosaic etc. with or without clumping. Symptoms induced by these different isolates on the test plant Chenopodium amaranticolor also showed considerable variability. Serological studies of 41 isolates of PCV (collected from Senegal, Burkina Faso, Niger and India), using seven monoclonal antibodies in Triple Antibody Sandwich ELISA (TAS-ELISA), permitted us to distinguish five different serogroups based on their reaction profiles. However, these did not correspond to the five groups formed in an arbitrary classification based on the symptomatology of C. amaranticolor. Serogroups do not correlate with the geographic origin.  相似文献   

8.
Grafting symptomless scions, derived from petunia asteroid mosaic virus (PeAMV)-infected trees, to healthy rootstocks resulted in only 3.3% infection in the resulting trees. Up to 90% of seeds from infected sweet cherries contained high quantities of PeAMV, but the virus was not transmitted to the seedlings apparently because of low virus content in the embryo and loss of infectivity during seed maturation and storage. Replanting healthy cherry trees cv. Sam, grafted to different rootstocks, into contaminated soils resulted in new infections. Eight of 13 trees on rootstocks derived from Prunus avium (F 12/1 and cv. Sam on its own roots) were infected with PeAMV within a period of four years but only one of 16 trees on Weiroot-rootstocks (selections from Prunus cerasus) became infected. The detection of PeAMV in naturally contaminated soil samples by the bait plant procedure, using Nicotiana clevelandii, was superior to testing soil eluates by enzyme-linked immunosorbent assay (ELISA) and immuno electron microscopy (IEM). Wild plants may contribute to virus propagation and maintenance of virus contamination of the soil as 25 of 310 samples from 712 herbaceous plants growing in the vicinity of infected trees contained PeAMV; the contaminated samples represented 12 species. The perpetuation of PeAMV by infected scion wood is probably of minor significance, and infection via the soil probably represents the most important means of spread of viral twig necrosis in northern Bavaria.  相似文献   

9.
The plasmodiophoromycete fungus, Polymyxa graminis was observed in the roots of Sorghum bicolor, S. sudanense, Pennisetum glaucum, Triticum aestivum, Cyperus rotundus, Eleucine coracana, Zea mays, Tridax procumbens and Arachis hypogaea collected from Indian peanut clump virus (IPCV)-infested fields. Examination of roots of IPCV-infected S. bicolor, S. sudanense, P. glaucum and T. aestivum grown in previously air dried field soil also showed the presence of cystosori of P. graminis. IPCV-infested soil stored at room temperature for 3 years transmitted the virus to A. hypogaea, T. aestivum and S. bicolor. Roots extracted from IPCV-infected P. glaucum and S. bicolor containing cystosori, and dried root fragments incorporated into sterile soil, transmitted the virus to A. hypogaea and T. aestivum. The root extracts contained primary zoospores of the fungus, presumably arising from cystosori. Utilising root fragments of S. sudanense containing cystosori as inoculum P. graminis was shown to infect both monocotyledonous and dicotyledonous plants. Profuse cystosorus production in rootlets only occurred in monocotyledonous plants. In dicotyledonous plants, in general, only few rootlets showed cystosori. Indian isolates of P. graminis appear to differ from isolates from temperate soils in that they can infect dicotyledonous plants and have a much wider host range.  相似文献   

10.
Hop plants became infected with the hop strain of arabis mosaic virus (AMV(H)) when grown in hopfield and woodland soil in which infected plants had been growing. Infection occurred in soil infested with the dagger nematode Xiphinema diversicaudatum, but neither in uninfested soil nor in soil previously heated to kill nematodes. X. diversicaudatum transferred direct from hop soils transmitted AMV(H) to young herbaceous plants and to hop seedlings; some of the hop seedlings developed nettlehead disease. A larger proportion of plants was infected using X. diversicaudatum obtained from a woodland soil and then given access to the roots of hop or herbaceous plants infected with AMV(H). AMV(H) was transmitted by adults and by larvae, in which the virus persisted for at least 36 and 29 wk, respectively. Difficulties were encountered in detecting AMV(H) in infected hop plants, due partly to the delay in virus movement from roots to shoots. Infection of hop shoots was seldom detected until the year after the roots were infested and sometimes nettlehead symptoms did not appear until the third year. Isolates of arabis mosiac virus from strawberry did not infect hop. The results are discussed in relation to the etiology and control of nettlehead and related diseases of hop.  相似文献   

11.
Aspergillus niger, a soil-borne fungus is a causative agent of hypocotyl malformations in infected groundnut (Arachis hypogaea L.) plants, but its effect on yield is unknown. This study sought to determine its effect on growth and yield. Seeds of Chinese and JL45 varieties were sown in soil inoculated with A. niger. Fresh and dry weights of the shoots and roots were taken at 10-day intervals. Nodule count was done at 30 days after emergence and subsequently at 10-day intervals. Pods of 20 plants each from inoculated and uninoculated soils were harvested. Growth was suppressed in plants grown on A. niger inoculated soil. Eight-day old plants grown in inoculated soil developed curvatures on their hypocotyls. Nodulation was suppressed (p < 0.05) in plants grown in inoculated soil. Although growth was suppressed in plants grown on inoculated soil, yield of both varieties of groundnut was not affected.  相似文献   

12.
Chemical suppression of the symptoms of two virus diseases   总被引:3,自引:0,他引:3  
Carbendazim applied at the rate of 2 g per plant to the roots of tobacco (Nicotiana tabacum cv. White Burley) plants before infection with tobacco mosaic virus (TMV) caused very considerable reduction in the severity of disease symptoms in systemically infected leaves but did not affect their virus content. Leaves of untreated, infected plants had a greatly reduced chlorophyll content 100 days after infection whereas the chlorophyll content of leaves of infected plants treated with carbendazim was similar to that of normal uninfected leaves. Carbendazim had no effect on the infectivity of TMV in vitro or on the local lesion reaction of N. glutinosa plants when inoculated with TMV. Carbendazim was applied to lettuce cv. Cobham Green at a total rate of o-i g per plant before and after they were infected with beet western yellows virus and the plants were then grown on in the field. At harvest time (50 days after infection) almost all the treated virus-infected plants were of a normal green appearance, whereas the untreated controls were almost all very severely yellowed and unmarketable.  相似文献   

13.
Cucumber mosaic (CMV) and alfalfa mosaic (AlfMV) viruses could not be detected in Nicotiana rustica tissues cultured at 32 °C for 16–18 days or at 40 °C for 5 days, but infectivity remained high in comparable tissue cultured at 22 °C. Incubation of infected cultures at 28–30 °C resulted in an initial reduction followed by a partial recovery in the infectivity of both viruses. The infectivity of CMV in tissues grown between 12 and 32 °C was highest in cultures grown at 12 °C. Although CMV infectivity was not detected in cultures after 16–18 days at 32 °C, virus was eliminated only after a further 30 days at 32 °C. When cultures were transferred from 32 to 22 °C after shorter treatment periods, infectivity rapidly increased to levels higher than those of infected tissues grown continuously at 22 °C. At 40 °C, CMV was eliminated from infected tissues after 9 days and AlfMV after 7 days. Cultures grown continuously at 40 °C deteriorated rapidly but, when grown under diurnal alternating periods of 8 h at 40 °C and 16 h at 22 °C, they remained viable and CMV was also inactivated.  相似文献   

14.
Attempts to isolate Ophiobolus graminis directly from infested soils failed, so host-infection techniques were used to study soil-borne populations of the fungus. Extracting organic debris from soils and grading it by wet sieving through standard meshes concentrated the fungus. Fractions were tested for infectivity either as layers in pots of sand or by packing into short lengths of polyvinyl chloride tubing, through which wheat seedlings were grown. Coarse debris (retained by 420 μ aperture sieves) was most infectious and usually caused lesions within 3 weeks; whole soil and especially fine debris (< 420 μ) caused fewer and less severe infections, which often became apparent only after 3 weeks. Slight infectivity of the sediment fractions was attributed to imperfect separation of debris. Soil sampled in crop or stubble rows caused more infections than soil from between rows. Usually seedling infection was made manifest by root lesions and runner hyphae, but these symptoms were not always plain or conclusive. Many seedling roots that rotted when kept moist and in the light produced perithecia within 6 weeks. Although perithecia formed on some roots where neither lesions nor hyphae were found, they did not form on all diseased roots. More needs to be known about the factors influencing perithecial formation before it can be used as a reliable confirmatory test.  相似文献   

15.
Seed-transmission in the ecology of nematode-borne viruses   总被引:3,自引:0,他引:3  
Virus-free populations of vector nematodes can acquire tomato black ring (TBRV), raspberry ringspot (RRV) and arabis mosaic (AMV) viruses from weed seedlings grown from virus-carrying seed. When soils from fields where nematode-borne viruses occurred naturally were air-dried to kill vector nematodes and then moistened, TBRV and RRV occurred commonly in the weed seedlings that grew, but AMV occurred only rarely. Similar tests did not detect tobacco ringspot, grapevine fanleaf or tobacco rattle viruses in weed seeds in the single soil studied in each instance, although these three viruses are also seed-borne in some of their hosts. Many weed species, when infected experimentally, readily transmit TBRV and RRV to their seed, but the viruses were much commoner in naturally occurring seed of some of these species than of others. These discrepancies between the frequency of seed-transmission of viruses from experimentally infected plants and the extent of natural occurrence of infected seed seem largely to reflect the host preferences of the vectors. Infective Longidorus elongatus kept in fallow soil retained TBRV and RRV only up to 9 weeks. When weed seeds in the soil were then allowed to germinate, the nematodes reacquired virus from the infected seedlings. Some weed species were better than others as sources of virus. Persistence of these viruses in fields through periods of fallow or fasting of the vector therefore depends on a continuing supply of infected seedlings produced by virus-containing weed seeds. This is probably less true of viruses like AMV and grapevine fanleaf, which persist for 8 months or more in their vectors (Xiphinema spp.). A few seeds containing TBRV and RRV were found in soils free of vector nematodes, suggesting that the viruses are disseminated in weed seed. This probably explains how TBRV and RRV have reached a large proportion of L. elongatus populations in eastern Scotland.  相似文献   

16.
The infection potential of sporosori of Polymyxa graminis involved in the transmission of the Indian peanut clump virus (IPCV) was assessed by culturing bait plants exposed to various concentrations of sporosorus suspensions and then determination of the numbers of plants that became infected. Storage of air-dried inoculum at temperatures above 30°C resulted in an increase in the infection potential compared to that of sporosori stored at 15°C or 20°C. In contrast, when the sporosori were stored at -20°C or freeze-dried, their infection potential was low. These results confirm the adaptation of P. graminis isolates associated with IPCV transmission to the tropical environment. The implication of storage temperature for the epidemiology of Indian peanut clump virus and for the assessment of the infection potential of the vector in the soil is discussed.  相似文献   

17.
The poor growth of young Eucalyptus regnans seedlings in undried soil from the mature forest of E. regnans can be overcome by previously air-drying the soil or by adding sufficient amounts of complete soluble fertilizer or equivalent concentrations of P (as NaH2PO4) and N (as NaNO3). A factorial pot experiment in which phosphate and nitrate were added to undried soil indicated that P was the primary deficiency for young seedlings and that response to N did not occur until this lack was satisfied. In dried soil, seedlings also responded to additions of complete fertilizer but most of this effect was due to N rather than P. Field trials in the mature forest also indicated greater growth in dried soil than undried soil and confirmed a response of young seedlings to superphosphate. In pot experiments, the concentration of P and N per g plant dry weight after four months was relatively constant irrespective of the final size of the plant. Seedlings in dried soil extracted up to 15 times more P than did those grown in undried soil. In general, chemical analysis of soil indicated more extractable P and N from dried soil although this was not always consistently so. Soil desiccation resulted in an increase in soil surface area due to the fragmentation of larger peds and to an increase in the number of microfractures which remained in the soil crumbs after rewetting. Mycorrhiza are likely to be important since the differentiation of the growth response of seedlings in dried and undried soil, which occurred at 5–6 weeks, corresponded with the establishment of full ectomycorrhizal development (80% root tips). The factors concerned with the increase in fertility after air-drying are discussed.Abbreviations GR Growth Ratio  相似文献   

18.
Variation in crop growth is an important limiting factor for groundnut production in Niger. Populations of Aphelenchoides sp., Ditylenchus sp., Helicotylenchus sp., Hoplolaimus pararobustus, Macroposthonia curvata, Paralongidorus bullatus, Scutellonema clathricaudatum, Telotylenchus indicus and Xiphinema parasetariae have been associated with groundnut crop growth variability. S. clathricaudatum, X. parasetariae and T. indicus were widespread and S. clathricaudatum was most abundant nematode. Population densities of S. clathricaudatum was always higher in the roots of poorly growing, chlorotic and stunted plants than in the roots of apparently healthy plants. A preplant population density of 1.3 S. clathricaudatum cm-3 soil caused (p=0.05) reduction in plant growth of groundnut cv. 55–437. S. clathricaudatum was mainly confined to 0–15 cm soil depth at the time of planting in June and was not found below 45 cm depth at any time during the crop growth period. Soil application of carbofuran (10 kg a.i ha-1) reduced the nematode population densities and resulted in vigorous and uniform crop growth. Higher Al and H-ion concentrations (0.50 meq 100 g-1 soil) also was associated with poorly growing chlorotic seedlings. Symptoms of nematode-caused variable growth were evident 3 to 4 weeks after seedling emergence.Submitted as ICRISAT Journal Article No. 1141.  相似文献   

19.
The biology and infection-behaviour of a typical isolate of Phialophora radicicola Cain have been compared with those of a representative isolate of Ophiobolus graminis (Sacc.) Sacc. Both species can utilize a nitrate source of nitrogen and both require thiamine and biotin for growth on inorganic nitro-gen; P. radicicola, but not O. graminis, was able to synthesize biotin when grown on asparagine as a nitrogen source. The pH range for good growth of P. radicicola in nutrient solution was narrower than that for O. graminis, and its growth rate on agar was only one-third. P. radicicola was the more active decomposer of cellulose, and its cellulolysis adequacy index was I.66 as com-pared with a value of 0.33 for 0. graminis. In agreement with prediction from Garrett's (I966) hypothesis on the cellulolysis adequacy index, saprophytic survival of P. radicicola in wheat straw was shortened by additional soil nitrogen, which prolongs survival of O. graminis.P. radicicola was found to spread ectotrophically over the roots of wheat, oats and barley by runner hyphae indistinguishable from those of O. graminis, but cortical infection caused no necrosis and no discernible check to growth of the infected cereals, nor any significant decrease in grain yield of inoculated wheat grown to maturity. Pre-existing infection of wheat roots by P. radicicola retarded spread of infection by O. graminis; inoculation of several grass species with P. radicicola reduced the extent of infection by O. graminis of wheat following the grasses.  相似文献   

20.
Wallander  Håkan 《Plant and Soil》2000,222(1-2):215-229
Pinus sylvestris seedlings, colonised by ectomycorrhizal (EM) fungi from either of two different soils (untreated forest soil and a limed soil from a clear cut area), were grown with or without biotite as a source of K. The biotite was naturally enriched in 87Sr and the ratio of 87Sr/ 86Sr in the plant biomass was estimated and used as a marker for biotite weathering and compared to estimates of weathering based on foliar content of K. Different nutrient regimes were used to expose the seedlings to deficiencies of K with and without an application of nitrogen (NH4NO3) in excess of seedling demand. The seedlings were grown for 220 days and the elemental composition of the shoots were analysed at harvest. The EM colonisation was followed by analysing the concentration of ergosterol in the roots and the soils. Bacterial activity of the soil was estimated by the thymidine incorporation technique. The concentration of organic acids in the soil solution was measured in the soil in which seedlings colonised by EM fungi from the untreated forest soil were grown. It was found that seedlings colonised by EM fungi from untreated forest soil had taken up more K in treatments with biotite addition compared to seedlings colonised by EM fungi from the limed forest soil (p<0.05). Seedlings from untreated forest soil had larger shoots and contained more K when grown with biotite compared to KCl as K source, indicating that biotite had a stimulatory effect on the growth of these seedlings which was not related to K uptake. Seedlings from the limed soil, on the other hand, had similar foliar K content when grown with either biotite or KCl as K source. The larger uptake of K in seedlings from untreated forest soil was not an effect of a more developed EM colonisation of the roots since seedlings from the limed soil had a higher ergosterol concentration both in the soil and in the roots. Nutrient regimes had no significant influence on the total uptake of K but the 87Sr/ 86Sr isotope ratio in the plant biomass indicated that seedlings grown with excess nitrogen supply had taken up proportionally less Sr from the biotite (1.8% of total Sr content) compared to seedlings grown with a moderate nitrogen supply (5.0%). Furthermore, seedlings grown with excess nitrogen supply had a reduced fungal colonisation of roots and soil and bacterial activity was lower in these soils. The 87Sr/ 86Sr ratio in the plant biomass was positively correlated with fungal colonisation of the roots (r 2=0.98), which may indicate that the fungus was involved in releasing Sr from the biotite. Uptake of K from biotite was not related to the amount of organic acids in the soil solution. Oxalic acid was positively related to the amount of ergosterol in the root, suggesting that oxalic acid in the soil solution originates from the EM symbionts. The accuracy of the estimations of biotite weathering based on K uptake by the seedlings in comparison with the 87Sr/86Sr isotope ratio measured in the shoots is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号