首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This study evaluates the bio-treatability performance and kinetic models of full-scale horizontal subsurface flow constructed wetland used for the tertiary treatment of composite industrial effluent characterized by high-salt content ranging from 5830 to 10,400 µS/cm and biochemical oxygen demand (BOD5): chemical oxygen demand (COD) ratio below 0.2. The wetland vegetated with Phragmites australis was operated in a semi-arid climate under an average hydraulic loading rate of 63?mm/d. The results of a 4-year operation calculated based on the concentration of pollutants showed that the average removal efficiency of COD, BOD5, and total suspended solids (TSS) were 17.5, 5.1, and 11.2%, respectively. The system reduced up to 6.5?±?0.7% of electrical conductivity presenting poor phyto-desalination potential without considering the contribution of evapotranspiration in water balance in contrast to satisfying performance for heavy metals reduction. The comparison of the kinetics of organic matter removal obtained by the first-order and Monod models paired with continuous stirred-tank reactor and plug flow regime showed that Monod-plug flow model provided the best fit with the constants of 2.01?g COD/m2·d and 0.3014?g BOD5/m2·d with the best correlation coefficient of 0.610 and 0.968 between the predicted and measured concentrations, respectively. The low kinetic rates indicate that the process is capable of effluent polishing instead of purification due to the presence of organic compounds recalcitrant to biodegradation and a high level of salinity.  相似文献   

2.
Monod and Logistic growth models have been widely used as basic equations to describe cell growth in bioprocess engineering. In the case of the Monod equation, the specific growth rate is governed by a limiting nutrient, with the mathematical form similar to the Michaelis–Menten equation. In the case of the Logistic equation, the specific growth rate is determined by the carrying capacity of the system, which could be growth-inhibiting factors (i.e., toxic chemical accumulation) other than the nutrient level. Both equations have been found valuable to guide us build unstructured kinetic models to analyze the fermentation process and understand cell physiology. In this work, we present a hybrid Logistic-Monod growth model, which accounts for multiple growth-dependent factors including both the limiting nutrient and the carrying capacity of the system. Coupled with substrate consumption and yield coefficient, we present the analytical solutions for this hybrid Logistic-Monod model in both batch and continuous stirred tank reactor (CSTR) culture. Under high biomass yield (Yx/s) conditions, the analytical solution for this hybrid model is approaching to the Logistic equation; under low biomass yield condition, the analytical solution for this hybrid model converges to the Monod equation. This hybrid Logistic-Monod equation represents the cell growth transition from substrate-limiting condition to growth-inhibiting condition, which could be adopted to accurately describe the multi-phases of cell growth and may facilitate kinetic model construction, bioprocess optimization, and scale-up in industrial biotechnology.  相似文献   

3.
The operation of tidal flow was studied using a pilot‐scale system treating high strength piggery wastewater. Located on a farm in Staffordshire, UK, the system consisted of five wetland treatment stages vegetated with common reeds of Phragmites australis. Wastewater samples were collected from the inlet and outlet of each stage and analyzed for BOD5, COD, NH4‐N, NO3‐N, NO2‐N, SS, PO4‐P and pH. Average hydraulic and organic loadings on the system were 0.12 m3/m2 d and 240 g BOD/m2 d, respectively, which is considerably higher than the typical loadings on conventional subsurface flow systems. On average, BOD5 and COD were reduced by 82 % and 80 % from initial concentrations of 2000 mg/L and 2750 mg/L, respectively, across the whole system. The first‐order kinetics constant for BOD5 removal (KBOD in m/d) in this tidal flow system is approximately 2.5 times the rate constant obtainable in a typical horizontal flow system, demonstrating a more efficient removal of organic matter in tidal flow wetlands. The overall efficiency of the system was found to increase with time before stabilizing towards the end of a start‐up period. Straight‐line correlations were established between the loading and removal of BOD5 and COD. Contributions by individual stages to the overall treatment were analyzed. SEM images of wetland media demonstrated the formation of biofilms and microbial activities inside the matrices of the wetland system, which accounted for the degradations of organic pollutants.  相似文献   

4.
Over the last decades, the populations of Austropotamobius pallipes have decreased markedly all over Europe. If we evaluate the ecological factors that determine its presence, we will have information that could guide conservation decisions. This study aims to investigate the chemical-physical demands of A. pallipes in NW Italy. To this end, we investigated 98 sites. We performed Principal Component Analysis using chemical-physical parameters, collected in both presence and absence sites. We then used principal components with eigenvalue > 1 to run Discriminant Function Analysis and Logistic Regression. The statistics on the concentration of Ca2+, water hardness, pH and BOD5 were significantly different in the presence and in the absence sites. pH and BOD5 played the most important role in separating the presence from the absence locations. These findings are further evidence that we should reduce dissolved organic matter and fine particles in order to contribute to species management and conservation.  相似文献   

5.
The water quality of the Lwiro River, Democratic Republic of Congo (DRC), Central Africa, was investigated on a monthly basis from December 1999–October 2000, at six stations along a hydraulic gradient from source to mouth, to evaluate the impact of land use on temperature, Dissolved Oxygen (DO), Biological Oxygen Demand (BOD5), alkalinity and suspended solids. Upstream, where forests are conserved, minimal changes of physico-chemical parameters of water were observed. Downstream, DO was reduced, due to the increased organic matter content which increased the decomposition rate. BOD5 and suspended solids increased downstream. Greater changes were found near agricultural areas and villages. Wetlands appear to mitigate BOD5 and DO impacts.  相似文献   

6.
The aim of this study was to examine the variation in treatment performance at three depths, and the degree of vertical mixing, within a 1.0 m deep horizontal subsurface-flow constructed wetland (HSSF-CW) planted with Schoenoplectus tabernaemontani (Gmel.) Palla, and treating primary settled municipal wastewater in sub-tropical New South Wales, Australia. Water samples were collected from the upper (0.17 m), middle (0.5 m), and lower (0.83 m) depths at five equi-spaced sample points along the longitudinal axis of the 8.8 m2 bed during two trials. Analysis of covariance (ANCOVA) indicated that the rate of pollutant concentration reduction between the three depths was not significantly different (p > 0.05) for all of the measured parameters (dissolved oxygen (DO), hydrogen electrode potentials (Eh), 5-day biochemical oxygen demand (BOD5)) total nitrogen (TN), TKN, and NH4-N. Thus, it can be concluded that the break-down of contaminants as wastewater moved through the HSSF-CW was approximately uniform across the 1.0 m depth profile. The lack of a significant depth effect can be largely explained by the substantial amount of vertical mixing that was observed when a pulse of lithium tracer was injected into the middle depth of the first intermediate sampling point. The tracer rapidly migrated vertically into the upper and lower depths as water moved through the bed and was almost completely mixed between the three depths by the time it reached the last intermediate sampling point.The majority of BOD5 removal occurred within the first-third of the bed where vegetation cover was poor. Performance of the bed declined over time from Trial 1 to Trial 2, possibly due to a cumulative build-up of organic matter within the substrate as a result of limited oxygen transfer throughout the 1.0 m depth of substrate via root leakage or diffusion across the air–water interface. Root penetration was limited to the upper 0.4 m of the substrate, with the majority of below-ground biomass forming a dense mat in the upper 0.2 m. A comparison of two-parameter (KC*) first-order volumetric rate constant (Kv20) with those obtained from 0.4 to 0.6 m deep HSSF-CW in the same region indicate that a doubling of the wetted depth resulted in no improvement in BOD5 removal and a decline in TN removal on an areal basis. Further investigations are warranted, comparing the performance of replicated beds spanning a range of depths (e.g. 0.25, 0.5 and 1.0 m) in order to quantitatively determine the optimal depth of HSSF-CWs treating domestic wastewater.  相似文献   

7.
Fat, oil and grease in wastewater can be difficult to treat because of their slow decomposition. Traditional pretreatment facilities to remove fat, oil and grease from wastewater are increasingly costly. The hypothesis in this study was that pretreatment of animal fat-containing wastewater in sand and sand/gravel filters facilitates the conversion of slowly degradable organic matter measured as the difference between chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5) for subsequent biological treatment. The pretreatment was evaluated using simulated turkey-processing wastewater and coarse sand and sand/gravel filters at a constant hydraulic loading rate of 132 L/m2/day. Two types of fixed media reactors were employed: (i) one set with a varying depth of coarse sand, and (ii) the second was similar but with an additional pea gravel cap. The results indicated that the relative removal of COD was slightly improved in the sand bioreactors with a pea gravel cap irrespective of the depth of coarse sand, but partial conversion to BOD5 was not consistently demonstrated. Pea gravel may act as a sieve to entrap organic matter including fat globules from the wastewater. Multiple dosing at the same daily loading rate slightly improved the treatment efficiency of the sand bioreactors. The ratios of influent-COD/effluent-COD were always greater than 1.0 following a change in the dosing frequency after a rest period, suggesting that organic matter, specifically fat globules in this case, was retained by the column matrix.  相似文献   

8.
With the rapid development of scaled anaerobic digestion of pig manure, the generation of liquid anaerobic digestate exceeds the farmland loading capacity, causing serious environmental pollution. Three laboratory‐scale horizontal subsurface flow constructed wetlands (CWs; planted + aeration, planted, and unplanted) were set up to investigate the feasibility of liquid digestate treatment in wetlands. Treatment capacity in different wetlands was evaluated under different influent concentrations (chemical oxygen demand [COD], 5 days biochemical oxygen demand [BOD5], and nitrogen forms). The effect of aeration and effluent recirculation on organic matter and total nitrogen removal was investigated. Results showed that integrating intermittent aeration in CWs significantly improved the oxygen condition (p < 0.01) in the wetland bed and promoted BOD5 removal to 90% in aerated CWs as compared with <15% in the unaerated CWs. Meanwhile, COD removal between these three wetlands did not show any difference and varied from 52 to 72% under influent concentration of 200–820 mg/L because of the high content of hard‐degradable organic matter in the liquid digestate. Intermittent aeration resulted in high ammonium removal (>98%) although the influent loading varied from 65 to 350 mg/L. However, intermittent aeration caused nitrate accumulation of 300 mg/L and limited total nitrogen (TN) removal of 33%. To intensify the TN removal, we verified effluent recirculation to increase the removal efficiency of TN to 78%. These results not only show the potential application of CWs for treatment of high‐strength liquid anaerobic digested slurry, but also indicate the significance of intermittent aeration on the enhanced removal of organic matter and ammonium.  相似文献   

9.
《Process Biochemistry》1999,34(5):429-439
Fenton’s oxidation and activated carbon adsorption were examined as pretreatment processes for dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentrations. In this work, each wastewater stream produced by individual production processes was classified as streams R1, R2, and R3. The stream having a value of BOD5/COD lower than 0.4 was pretreated by Fenton’s oxidation or activated carbon adsorption to increase the ratio of BOD5/COD which indicates biodegradability. For Fenton’s oxidation with one stream having a value of BOD5/COD lower than 0.4, the optimal reaction pH was 3.0 and the minimum dosing concentration (mg l−1) of H2O2:FeSO4·7H2O was 700:3500. Stream R3, which consisted mainly of methanol was efficiently treated by activated carbon adsorption. The ratio of BOD5/COD was also increased to 0.432 and 0.31 from 0.06 in Fenton’s oxidation and activated carbon adsorption, respectively. A biological treatment system using a fixed bed reactor was also investigated to enhance biological treatment efficiency at various hydraulic retention times, pretreatment conditions by Fenton’s reagent and salt concentrations by dyestuff wastewater. In addition, the efficiency of Fenton’s oxidation as a post-treatment system was also investigated to present a total treatment process of dyestuff wastewater. As the influent COD and salinity were increased, the effluent SS and COD were consequently increased. However, as the microorganisms became adapted to the changed influent condition, the treatment efficiency of the fixed bed reactor quickly recovered under the high COD and salinity since the microorganisms were well adapted to toxic influent conditions. A wastewater treatment process consisting of chemical oxidation, activated carbon adsorption, fixed bed biofilm process and Fenton’s oxidation as a post-treatment system can be useful to treat dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentration.  相似文献   

10.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

11.
Bacillus sphaericus MTCC511 was used for the production of protease in submerged batch fermentation. Maximum protease activity of 1010 U/L was obtained during a fermentation period of 24 h under optimized conditions of 30 °C in a medium with an initial pH of 7 and at a shaking rate of 120 rpm. The maximum biomass obtained in the batch fermentation was 2.55 g/L after 16 h. Various unstructured models were analyzed to simulate the experimental values of microbial growth, protease activity and substrate concentration. The unstructured models, i.e. the Monod model for microbial growth, the Monod incorporated Luedeking‐Piret model for the production of protease and the Monod‐incorporated modified Luedeking‐Piret model for the utilization of substrate were capable of predicting the fermentation profile with high coefficient of determination (R2) values of 0.9967, 0.9402 and 0.9729, respectively. The results indicated that the unstructured models were able to describe the fermentation kinetics more effectively.  相似文献   

12.
Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode‐associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst–Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome‐scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.  相似文献   

13.
Growth of Tubifex tubifex on highly caloric activated sludge and poor in organic matter natural silt was experimentally studied. The relationship between oxygen consumption rate, weight, and caloric value of T. tubifex body in culture on activated sludge was determined to calculate the growth efficiency (K2 = P/P + R). The growth rate has been determined, and models of T. tubifex growth are given under various trophic conditions conforming to results of the experiment. Somatic growth, generative growth and life span of this species were compared on the basis of the experiments and literature. Acceleration of growth and prolongation of life under conditions of caloric food and delay of these processes in silt poor in organic matter have been established and measured. T. tubifex was found to have advantages as compared to other tubificid species in response to increasing amounts of nutrient food in waters polluted by organic matter and, therefore, to produce abundant populations under these conditions.  相似文献   

14.
ABSTRACT We tested whether pelagic light and nutrient availability, metabolism, organic pools and CO2-supersaturation were related to lake size and surrounding forest cover in late summer–autumn measurements among 64 small (0.02–20 ha), shallow seepage lakes located in nutrient-rich, calcareous moraine soils in North Zealand, Denmark. We found a strong implicit scaling to lake size as light availability increased significantly with lake size while nutrient availability, phytoplankton biomass and dissolved organic matter declined. Forest lakes had significantly stronger net heterotrophic traits than open lakes as higher values were observed for light attenuation above and in the water, dissolved organic matter, pelagic community respiration (R) relative to maximum gross primary production (R/GPP) and CO2-supersaturation. Total-phosphorus was the main predictor of phytoplankton biomass (Chl) despite a much weaker relationship than observed in previous studies of larger lakes. Maximum gross primary production increased with algal biomass and decreased with dissolved organic matter, whereas community respiration increased with dissolved organic matter and particularly with gross primary production. These results suggest that exogenous organic matter supplements primary production as an energy source to heterotrophs in these small lakes, and particularly so in forest lakes experiencing substantial shading from the forest and dissolved humic material. This suggestion is supported by 20–30-fold CO2 supersaturation in the surface water of the smallest forest lakes and more than sixfold supersaturation in 75% of all measurements making these lakes among the most supersaturated temperate lakes examined so far.  相似文献   

15.
Waste production from fish farm sites presents a number of problems for regulatory authorities; sites are often distant from laboratories, whilst waste output fluctuates rapidly during the day in response to both the activity of the fish and production methods employed at any site (i.e. feeding regime, tank cleaning). Two land-based sites in NW Scotland, producing Atlantic salmon (Salmo salar) juveniles were visited regularly over a 4-month period, and outputs measured on a diurnal cycle to determine the most appropriate strategy for sampling such waste discharges. The BOD5 of discrete samples taken at hourly intervals and a single composite sample for the whole 24-h period were compared for the pre- and post-treatment outflow sites for BOD5 content. The BOD5 value of the untreated composite sample was shown to exceed that of the mean of all 24 1-h discrete samples in a highly significant manner. It is suggested that the presence of solid particles has a disproportionate effect on BOD5 value of composite samples.  相似文献   

16.
A biofilm model with substrate inhibition is proposed for the activated sludge growing discs of rotating biological contactor (RBC); this model is different from the steady-state biofilm model based on the Monod assumption. Both deep and shallow types of biofilms are examined and discussed. The biofilm models based on both Monod and substrate inhibition (Haldane) assumptions are compared. In addition, the relationships between substrate utilization rate, biofilm thickness, and liquid phase substrate concentration are discussed. The influence order of the factors that affect the biofilm thickness is studied and discussed by combining the Taguchi method and grey relational analysis. In this work, a Taguchi orthogonal table is used to construct the series that is needed for grey relational analysis to determine the influence priority of the four parameters S B , kX f , K s, and K i .  相似文献   

17.
A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.  相似文献   

18.
1. Despite real improvement in the water quality of many previously eutrophic lakes, the recovery of submerged vegetation has been poor. This lack of recovery is possibly caused by the accumulation of organic matter on the top layer of the sediment, which is produced under eutrophic conditions. Hence, our objective was to study the combined effects of quantity and lability of sediment organic matter on the biomass of Echinodorus repens and Littorella uniflora and on the force required to uproot plants of L. uniflora. 2. Lake sediments, rich in organic matter, were collected from four lakes, two with healthy populations of isoetids and two from which isoetids had disappeared. The four lake sediments were mixed with sand to prepare a range of experimental sediments that differed in quantity and lability of sediment organic matter. Two isoetid species, E. repens and L. uniflora, were grown in these sediments for 8 weeks. Sediment quality parameters, including elemental composition, nutrient availability and mineralisation rates, were determined on the raw sources of sediment from the lakes. Porewater and surface water were analysed for the chemical composition in all mixtures. At the end of the experiment, plants were harvested and their biomass, tissue nutrient concentration and (for L. uniflora) uprooting force were measured. 3. For both species, all plants survived and showed no signs of stress on all types of sediment. The biomass of E. repens increased as the fraction of organic matter was increased (from 6 to 39% of organic content, depending upon sediment type). However, in some of the sediment types, a higher fraction of organic matter led to a decline in biomass. The biomass of L. uniflora was less responsive to organic content and was decreased significantly only when the least labile sediment source was used to create the gradient of organic matter. The increase in shoot biomass for both species was closely related to higher CO2 concentrations in the porewater of the sediment. The force required to uproot L. uniflora plants over a range of sediment organic matter fitted a Gaussian model; it reached a maximum at around 15% organic matter and declined significantly above that. 4. Increasing organic matter content of the sediment increased the biomass of isoetid plants, as the positive effects of higher CO2 production outweighed the negative effects of low oxygen concentration in more (labile) organic sediments. However, sediment organic matter can adversely affect isoetid survival by promoting the uprooting of plants.  相似文献   

19.
The potential use of epilithic diatoms as indicators of organic pollution was evaluated in Gravataí River, RS, (latitude 29°45′–30°12′ S; longitude 50°27′–51°12′ W). The river suffers agricultural impacts in its upper course and urban and industrial organic pollution in its lower course. Epilithic diatoms were sampled eight times from September 2000 to August 2002, at six sites. Species were identified and densities and relative abundances of populations were determined. Simultaneously, physical, chemical and microbiological variables were measured (water temperature, conductivity, turbidity, pH, dissolved oxygen, biochemical oxygen demand (BOD5), chemical oxygen demand, ammonium, organic nitrogen, total nitrogen, ortho-phosphate, total phosphate, chloride and faecal coliforms). In order to interpret the environmental and biological variables, discriminant analysis and the TWINSPAN methods (Two-Way Indicator Species Analysis) were applied. The results indicated that the concentrations of ortho-phosphate, ammonium, total organic nitrogen, BOD5 and faecal coliforms characterized a pollution gradient along the river, where changes in the abundance or species composition were observed. Species were classified into three groups: Group A, including species more tolerant to heavy organic pollution and eutrophication, represented by Luticola goeppertiana, L. mutica, Eolimna subminuscula, Nitzschia palea and Sellaphora pupula; Group B, comprised of tolerant and widely distributed species such as Eunotia bilunaris, Frustulia crassinervia, F. saxonica, Navicula cryptocephala, N. cryptotenella, Nitzschia palea var. tenuirostris, Surirella angusta, Pinnularia microstauron and Ulnaria ulna and Group C, with less pollution tolerant species represented by Eunotia sp. and Gomphonema parvulum.  相似文献   

20.
基于FvCB模型的叶片光合生理对环境因子的响应研究进展   总被引:7,自引:0,他引:7  
唐星林  曹永慧  顾连宏  周本智 《生态学报》2017,37(19):6633-6645
为提高叶片光合速率并更好地理解叶片光合生理对环境因子变化的响应机制,FvCB模型(C_3植物光合生化模型)常用于分析不同环境条件下CO_2响应曲线并预测叶片活体内光合系统的内在变化状况。系统介绍了FvCB模型的建立、发展过程和拟合方法等基本理论,综述了该模型在叶片光合生理对光、CO_2、水、温度和N营养等环境因子变化的响应机制中的应用研究。为进一步完善FvCB模型并更好地理解叶片活体内光合系统对环境因子变化的响应机制,未来拟加强以下研究:1)羧化速率与光合电子传递速率之间的联系;2)叶肉导度的具体组分及其对FvCB模型参数估计的影响;3)叶片气孔导度和叶肉导度对环境因子变化的调控机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号