首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
4.
5.
Functional analysis of Sox8 and Sox9 during sex determination in the mouse   总被引:12,自引:0,他引:12  
Sex determination in mammals directs an initially bipotential gonad to differentiate into either a testis or an ovary. This decision is triggered by the expression of the sex-determining gene Sry, which leads to the activation of male-specific genes including the HMG-box containing gene Sox9. From transgenic studies in mice it is clear that Sox9 is sufficient to induce testis formation. However, there is no direct confirmation for an essential role for Sox9 in testis determination. The studies presented here are the first experimental proof for an essential role for Sox9 in mediating a switch from the ovarian pathway to the testicular pathway. Using conditional gene targeting, we show that homozygous deletion of Sox9 in XY gonads interferes with sex cord development and the activation of the male-specific markers Mis and P450scc, and leads to the expression of the female-specific markers Bmp2 and follistatin. Moreover, using a tissue specific knock-out approach, we show that Sox9 is involved in Sertoli cell differentiation, the activation of Mis and Sox8, and the inactivation of Sry. Finally, double knock-out analyses suggest that Sox8 reinforces Sox9 function in testis differentiation of mice.  相似文献   

6.
7.
Sry (sex-determining region on the Y chromosome) is a master gene that initiates testis differentiation of the bipotential indifferent gonad in mammals. In mice, Sry expression is transiently activated in a center-to-pole wave along the anteroposterior (AP) axis of developing XY gonads. Shortly after the onset of Sry activation, Sox9 (Sry-related HMG box-9), a fundamental testis-differentiation gene common to all vertebrates, is also activated in a center-to-pole pattern similar to the initial Sry expression profile. Several male-specific cellular events, such as glycogenesis, coelomic epithelium proliferation, mesonephric migration and vasculogenesis, are induced in XY gonads following the onset of Sry and Sox9 expression. This paper mainly focuses on recent advances in elucidating the regulatory mechanisms of Sry and Sox9 expression and male-specific cellular events immediately downstream of SRY action during the initial phases of testis differentiation.  相似文献   

8.
Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XY(B6) mice impaired testis differentiation, but no ovarian tissue developed. If, however, a Y(AKR) chromosome replaced the Y(B6) chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/- B6 XY(AKR), Wt1+/- B6 XY(AKR), B6 XY(POS), and B6 XY(AKR) fetuses. We propose that Wt1(B6) and Sf1(B6) are hypomorphic alleles of testis-determining pathway genes and that Wnt4(B6) is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1(B6) and/or Sf1(B6) alleles that compromise testis differentiation and a Wnt4(B6) allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a "weak" Sry allele, such as the one on the Y(POS) chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal.  相似文献   

9.
Washburn LL  Albrecht KH  Eicher EM 《Genetics》2001,158(4):1675-1681
C57BL/6J-T-associated sex reversal (B6-TAS) in XY mice results in ovarian development and involves (1) hemizygosity for Tas, a gene located in the region of Chromosome 17 deleted in T(hp) and T(Orl), (2) homozygosity for one or more B6-derived autosomal genes, and (3) the presence of the AKR Y chromosome. Here we report results from experiments designed to investigate the Y chromosome component of this sex reversal. Testis development was restored in B6 T(Orl)/+ XY(AKR) mice carrying a Mus musculus Sry transgene. In addition, two functionally different classes of M. domesticus Sry alleles were identified among eight standard and two wild-derived inbred strains. One class, which includes AKR, did not initiate normal testis development in B6 T(Orl)/+ XY mice, whereas the other did. DNA sequence analysis of the Sry ORF and a 5' 800-bp segment divided these inbred strains into the same groups. Finally, we found that Sry is transcribed in B6 T(Orl)/+ XY(AKR) fetal gonads but at a reduced level. These results pinpoint Sry as the Y-linked component of B6-TAS. We hypothesize that the inability of specific M. domesticus Sry alleles to initiate normal testis development in B6 T(Orl)/+ XY(AKR) mice results from a biologically insufficient level of Sry expression, allowing the ovarian development pathway to proceed.  相似文献   

10.
The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch— Sry in the case of mammals—is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.  相似文献   

11.
The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch— Sry in the case of mammals—is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.  相似文献   

12.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

13.
14.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

15.
16.
17.
Male-to-female sex reversal in mice lacking fibroblast growth factor 9   总被引:14,自引:0,他引:14  
Colvin JS  Green RP  Schmahl J  Capel B  Ornitz DM 《Cell》2001,104(6):875-889
Fgfs direct embryogenesis of several organs, including the lung, limb, and anterior pituitary. Here we report male-to-female sex reversal in mice lacking Fibroblast growth factor 9 (Fgf9), demonstrating a novel role for FGF signaling in testicular embryogenesis. Fgf9(-/-) mice also exhibit lung hypoplasia and die at birth. Reproductive system phenotypes range from testicular hypoplasia to complete sex reversal, with most Fgf9(-/-) XY reproductive systems appearing grossly female at birth. Fgf9 appears to act downstream of Sry to stimulate mesenchymal proliferation, mesonephric cell migration, and Sertoli cell differentiation in the embryonic testis. While Sry is found only in some mammals, Fgfs are highly conserved. Thus, Fgfs may function in sex determination and reproductive system development in many species.  相似文献   

18.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

19.
20.
The phenomenon of B6-Y(DOM) sex reversal arises when certain variants of the Mus domesticus Y chromosome are crossed onto the genetic background of the C57BL/6J (B6) inbred mouse strain, which normally carries a Mus musculus-derived Y chromosome. While the sex reversal has been assumed to involve strain-specific variations in structure or expression of Sry, the actual cause has not been identified. Here we used in situ hybridization to study expression of Sry, and the critical downstream gene Sox9, in strains containing different chromosome combinations to investigate the cause of B6-Y(DOM) sex reversal. Our findings establish that a delay of expression of Sry(DOM) relative to Sry(B6) underlies B6-Y(DOM) sex reversal and provide the first molecular confirmation that Sry must act during a critical time window to appropriately activate Sox9 and effect male testis determination before the onset of the ovarian-determining pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号