首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
Relative synthesis of malic enzyme is stimulated 25-to 100-fold by feeding neonatal ducklings or by incubating embryonic chick hepatocytes in culture with triiodothyronine. Synthesis of the enzyme is almost completely blocked when fed birds are starved or when triiodothyronine-treated hepatocytes in culture are also treated with glucagon. Cytoplasmic poly(A)+ RNA was isolated from livers of intact ducklings or hepatocytes in culture treated as described above and translated in an mRNA-dependent rabbit reticulocyte lysate. The identity of malic enzyme synthesized in the cell-free system was confirmed by virtue of its antigenicity, subunit molecular weight, and proteolytic peptide pattern. Translatable levels of malic enzyme mRNA paralleled changes in relative synthesis of malic enzyme in vivo and in hepatocytes in culture. Translatable levels od albumin mRNA were either unaffected or changed in a direction opposite to that of malic enzyme mRNA. Thus, both nutritional and hormonal regulation of malic enzyme synthesis involves regulation of cytoplasmic translatable malic enzyme mRNA levels. The hepatocyte culture system is ideally suited for future studies on the regulation of malic enzyme mRNA synthesis and/or degradation by thyroid hormone and glucagon.  相似文献   

3.
4.
5.
6.
Summary The mRNAs for fatty acid synthase and malic enzyme were almost undetectable in total RNA extracted from the livers of 16-day old chick embryos. Both mRNAs increased in abundance between the 16th day of incubation and the day of hatching. In neonates, fatty acid synthase mRNA level was dependent on nutritional status, increasing slowly if the chicks were starved and rapidly if they were fed. The abundance of malic enzyme mRNA decreased in starved neonatal chicks and increased in fed ones. When neonates were first fed and then starved, starvation caused a large decrease in the abundance of both mRNAs. Conversely, feeding, after a period of starvation, resulted in a substantial increase in both mRNAs. The relative abundances of fatty acid synthase and malic enzyme mRNAs correlated positively with relative rates of enzyme synthesis. Thus, nutritional and hormonal regulation of the synthesis of these two lipogenic enzymes is exerted primarily at a pre-translational level.The abundance of albumin mRNA decreased significantly between the 16th day of incubation and the day of hatching but did not change thereafter in fed or starved chicks. The relative stability of albumin mRNA levels after hatching attests to the selectivity of the nutritional regulation of fatty acid synthase and malic enzyme mRNAs. The decrease in albumin mRNA which occurred between 16 days of incubation and hatching contrasts with the increase in albumin mRNA sequences which occurred during late gestation in the fetal rat (20). High levels of albumin in the chick embryo may be related to the lack of an analogue of mammalian alpha-fetoprotein in birds.Abbreviations PIPES piperazine-N,N-bis (2 ethanesulfonic acid) - SDS sodium dodecyl sulfate Postdoctoral Fellow of the Medical Research Council of Canada.  相似文献   

7.
8.
Malic enzyme [L-malate-NADP oxidoreductase (decarboxylating), EC 1.1.1.40] and fatty acid synthase activities were barely detectable in the uropygial gland of duck embryos until 4 or 5 days before hatching, when they began to increase. These activities increased about 30- and 140-fold, respectively, by the day of hatching. Malic enzyme and fatty acid synthase activities were also very low in embryonic liver. However, hepatic malic enzyme activity did not increase until the newly hatched ducklings were fed. Hepatic fatty acid synthase began to increase the day before hatching and the rate of increase in enzyme activity accelerated markedly when the newly hatched ducklings were fed. Starvation of newly hatched or 12-day-old ducklings had no effect on the activities of malic enzyme and fatty acid synthase in the uropygial gland but markedly inhibited these activities in liver. Changes in the concentrations of both enzymes and in the relative synthesis rates of fatty acid synthase correlated with enzyme activities in both uropygial gland and liver. Developmental patterns for sequence abundance of malic enzyme and fatty acid synthase mRNAs in uropygial gland and liver were similar to those for their respective enzyme activities. Starvation of 4-day-old ducklings had no significant effect on the abundance of these mRNAs in uropygial gland but caused a pronounced decrease in their abundance in liver. It is concluded that developmental and nutritional regulation of these enzymes is tissue specific and occurs primarily at a pretranslational level in both uropygial gland and liver.  相似文献   

9.
10.
11.
12.
The relative amounts of mRNAs coding for fatty-acid synthase (EC 2.3.1.85), acetyl-CoA carboxylase (EC 6.4.1.2), ATP citrate lyase (EC 4.1.3.8) and malic enzyme (EC 1.1.1.40) were determined in lungs and livers of adult rats that were normally fed, starved for 48 h or starved for 48 h and subsequently refed for 72 h with a carbohydrate-rich, fat-free diet. In the liver, starvation caused a small decrease in the relative abundance of the mRNAs which was not statistically significant. Subsequent refeeding caused a statistically significant increase in mRNAs for all of the enzymes studied. In the lung, no significant changes were found, indicating that the regulation of the abundance of mRNAs encoding the lipogenic enzymes in the lung differs from that in the liver. In the developing rat lung, mRNA for fatty-acid synthase increased 3-fold in abundance between fetal days 18 and 20 and decreased directly after birth (at day 22 of gestation). A similar pattern was observed for ATP citrate lyase mRNA. The level of acetyl-CoA carboxylase mRNA decreased significantly after birth. These observations indicate that in perinatal rat lungs, pretranslational regulation is involved in the control of the synthesis of these enzymes. The abundance of acetyl-CoA carboxylase mRNA did not change in the prenatal period, a time during which the specific activity of this enzyme increases. This lack of correlation between the specific activity of acetyl-CoA carboxylase and the abundance of its mRNA may indicate that translational regulation of the synthesis of the enzyme or post-synthetic regulatory effects on enzyme molecules are involved in the control of this enzyme in the prenatal period. No changes in the abundance of lung malic enzyme mRNAs were observed throughout the perinatal period.  相似文献   

13.
14.
Light-stimulated synthesis of NADP malic enzyme in leaves of maize   总被引:4,自引:0,他引:4  
Illumination of etiolated maize plants for 80 h brings about a 15-20-fold increase in activity of NADP malic enzyme (EC 1.1.1.40). Increases in NADP malic enzyme protein and in the level of translatable mRNA for this protein occur simultaneously with the activity increase. Radiolabeled amino acids are also incorporated into NADP malic enzyme during this time. These results are consistent with the conclusion that an increase in NADP malic enzyme activity during greening results from de novo synthesis of NADP malic enzyme protein. Polyadenylated RNA extracted from greening maize leaves directs the synthesis in vitro of a protein 12,000 daltons larger than NADP malic enzyme purified from corn leaves. This protein is a precursor of NADP malic enzyme because 1) both the precursor and mature NADP malic enzyme are immunoprecipitated by antibody made against NADP malic enzyme purified from corn leaves, 2) both NADP malic enzyme protein and the level of mRNA for the precursor increase during greening, and 3) peptide maps of the precursor and of mature NADP malic enzyme are very similar. Mature NADP malic enzyme and its precursor (synthesized in vitro) both migrate on sodium dodecyl sulfate-polyacrylamide gradient gels as doublet bands. Peptide analyses show all bands to be structurally related.  相似文献   

15.
16.
17.
18.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

19.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

20.
RNA turnover in Trypanosoma brucei.   总被引:14,自引:4,他引:10       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号