首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry of wild-type lentivirus equine infectious anemia virus (EIAV) into cells requires a low-pH step. This low-pH constraint implicates endocytosis in EIAV entry. To identify the endocytic pathway involved in EIAV entry, we examined the entry requirements for EIAV into two different cells: equine dermal (ED) cells and primary equine endothelial cells. We investigated the entry mechanism of several strains of EIAV and found that both macrophage-tropic and tissue culture-adapted strains utilize clathrin-coated pits for entry. In contrast, a superinfecting strain of EIAV, EIAVvMA-1c, utilizes two mechanisms of entry. In cells such as ED cells that EIAVvMA-1c is able to superinfect, viral entry is pH independent and appears to be mediated by plasma membrane fusion, whereas in cells where no detectable superinfection occurs, EIAVvMA-1c entry that is low-pH dependent occurs through clathrin-coated pits in a manner similar to wild-type virus. Regardless of the mechanism of entry being utilized, the internalization kinetics of EIAV is rapid with 50% of cell-associated virions internalizing within 60 to 90 min. Cathepsin inhibitors did not prevent EIAV entry, suggesting that the low-pH step required by wild-type EIAV is not required to activate cellular cathepsins.  相似文献   

2.
A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3' half of the genome.  相似文献   

3.
Brindley MA  Maury W 《Journal of virology》2005,79(23):14482-14488
Recently, it has become evident that entry of some retroviruses into host cells is dependent upon a vesicle-localized, low-pH step. The entry mechanism of equine infectious anemia virus (EIAV) has yet to be examined. Here, we demonstrate that wild-type strains of EIAV require a low-pH step for productive entry. Lysosomotropic agents that inhibit the acidification of internal vesicles inhibited productive entry of EIAV. The presence of ammonium chloride (30 mM), monensin (30 microM), or bafilomycin A (50 nM) in the medium dramatically decreased the number of EIAV antigen-positive cells. We found that a low-pH step was required for EIAV infection of tissue culture cell lines as well as primary cells, such as endothelial cells and monocyte-derived macrophages. The ammonium chloride treatment did not reduce virion stability, nor did the treatment prevent virion binding to cells. Consistent with a requirement for a low-pH step, virion infectivity was enhanced more than threefold by brief low-pH treatment following binding of viral particles to permissive cells. A superinfecting variant strain of EIAV, vMA-1c, did not require a low-pH step for productive infection of fibroblasts. However, lysosomotropic agents were inhibitory to vMA-1c infection in the other cell types that vMA-1c infected but did not superinfect, indicating that the entry pathway used by vMA-1c for superinfection abrogates the need for the low-pH step.  相似文献   

4.
The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.  相似文献   

5.
6.
Equine infectious anemia virus (EIAV) contains the simplest genome among lentiviruses in that it encodes only three putative regulatory genes (S1, S2, S3) in addition to the canonical gag, pol, and env genes, presumably reflecting its limited tropism to cells of monocyte/macrophage lineage. Tat and Rev functions have been assigned to S1 and S3, respectively, but the specific function for the S2 gene has yet to be determined. Thus, the function of S2 in virus replication in vitro was investigated by using an infectious molecular viral clone, EIAVUK. Various EIAVUK mutants lacking S2 were constructed, and their replication kinetics were examined in several equine cell culture systems, including the natural in vivo target equine macrophage cells. The EIAV S2 mutants showed replication kinetics similar to those of the parental virus in all of the tested primary and transformed equine cell cultures, without any detectable reversion of mutant genomes. The EIAVUK mutants also showed replication kinetics similar to those of the parental virus in an equine blood monocyte differentiation-maturation system. These results demonstrate for the first time that the EIAV S2 gene is not essential and does not appear to affect virus infection and replication properties in target cells in vitro.  相似文献   

7.
8.
为了在体外精确、简便地测定马传染性贫血病毒(EIAV)的中和抗体和研究不同毒株与受体的亲和性,克隆了马慢病毒受体1(ELR1)cDNA并插入真核表达载体pcDNA3.1( ),构建了表达载体pELR1。该载体瞬时转染293细胞后,经Western blot和间接免疫荧光(IFA)检测,确认了ELR1的表达。在pELR1质粒的基础上,插入EIAV疫苗株前病毒基因组转录调控区LTR以及萤火虫荧光素酶报告基因(Luc)构建了表达载体pELR1-LTR-Luc,并转染293细胞,建立了ELR1-LTR-Luc(293-E)细胞系。该细胞系能稳定表达ELR1基因,并且能在LTR的调控下表达萤火虫荧光素酶基因。用1000TCID50的EIAV驴胎皮肤细胞疫苗株D18V13接种该细胞,24h后检测其荧光素酶活性是未接毒对照的3.15倍。同时用IFA检测证明了病毒在细胞内的增殖。EIAV强毒株L21的接毒试验显示,ELR1-LTR(293-E)细胞的萤火虫荧光素酶活性与该毒株的接毒量在10-2~10-7稀释范围内呈正相关。该细胞系传35代后,外源基因的表达特征未发生改变。该细胞系的建立为进一步开展EIAV与细胞受体相互作用以及中和抗体评价等研究奠定了重要基础。  相似文献   

9.
An infectious nonpathogenic molecular clone (19-2-6A) of equine infectious anemia virus (EIAV) was modified by substitution of a 3.3-kbp fragment amplified by PCR techniques from a pathogenic variant (EIAVPV) of the cell culture-adapted strain of EIAV (EIAVPR). This substitution consisted of coding sequences for 77 amino acids at the carboxyl terminus of the integrase, the S1 (encoding the second exon of tat), S2, and S3 (encoding the second exon of rev) open reading frames, the complete env gene (including the first exon of rev), and the 3′ long terminal repeat (LTR). Modified 19-2-6A molecular clones were designated EIAVPV3.3, and infection of a single pony (678) with viruses derived from a mixture of five of these molecular clones induced clinical signs of acute equine infectious anemia (EIA) at 23 days postinfection (dpi). As a consequence of this initial study, a single molecular clone, EIAVPV3.3#3 (redesignated EIAVUK), was selected for further study and inoculated into two ponies (613 and 614) and two horses (700 and 764). Pony 614 and the two horses developed febrile responses by 12 dpi, which was accompanied by a 48 to 64% reduction in platelet number, whereas pony 613 did not develop fever (40.6°C) until 76 dpi. EIAV could be isolated from the plasma of these animals by 5 to 7 dpi, and all became seropositive for antibodies to this virus by 21 dpi. Analysis of the complete nucleotide sequence demonstrated that the 3.3-kbp 3′ fragment of EIAVUK differed from the consensus sequence of EIAVPV by just a single amino acid residue in the second exon of the rev gene. Complete homology with the EIAVPV consensus sequence was observed in the hypervariable region of the LTR. However, EIAVUK was found to contain an unusual 68-bp nucleotide insertion/duplication in a normally conserved region of the LTR sequence. These results demonstrate that substitution of a 3.3-kbp fragment from the EIAVPV strain into the infectious nonpathogenic molecular clone 19-2-6A leads to the production of progeny virus particles with the ability to induce clinical signs of EIA. Therefore, EIAVUK, which is the first pathogenic, cell culture-adapted molecular clone of EIAV to be described, should be of value in identifying viral determinants of pathogenicity.  相似文献   

10.
We employed the equine lentivirus equine infectious anemia virus (EIAV) to investigate the cellular restrictions for lentivirus replication in murine NIH 3T3 cells. The results of these studies demonstrate that NIH 3T3 cells expressing the EIAV receptor ELR1 and equine cyclin T1 supported productive replication of EIAV and produced infectious virions at levels similar to those found in a reference permissive equine cell line. The studies presented here demonstrate, for the first time, differential levels of restriction for EIAV and human immunodeficiency virus type 1 (HIV-1) replication in murine cells and suggest that these differences can be exploited to reveal critical virus-cell interactions required for HIV-1 assembly and budding of lentivirus particles.  相似文献   

11.
Equine lentivirus receptor 1 (ELR1) has been identified as a functional cellular receptor for equine infectious anemia virus (EIAV). Herein, recombinant ELR1 and EIAV surface glycoprotein gp90 were respectively expressed in Drosophila melanogaster S2 cells, and purified to homogeneity by Ni-NTA affinity chromatography and gel filtration chromatography. Gel filtration chromatography and analytical ultracentrifugation (AUC) analyses indicated that both ELR1 and gp90 existed as individual monomers in solution and formed a complex with a stoichiometry of 1:1 when mixed. The structure of ELR1 was first determined with the molecular replacement method, which belongs to the space group P42212 with one molecule in an asymmetric unit. It contains eight antiparallel β-sheets, of which four are in cysteine rich domain 1 (CRD1) and two are in CRD2 and CRD3, respectively. Alignment of ELR1 with HVEM and CD134 indicated that Tyr61, Leu70, and Gly72 in CRD1 of ELR1 are important residues for binding to gp90. Isothermal titration calorimetry (ITC) experiments further confirmed that Leu70 and Gly72 are the critical residues.  相似文献   

12.
Similar to other human and animal lentiviruses, equine infectious anemia virus (EIAV) is detectable in vivo in cells of the monocyte-macrophage lineage. Owing to their short-lived nature, horse peripheral blood macrophage cultures (HMC) are rarely used for in vitro propagation of EIAV, and equine dermal (ED) or kidney cell cultures, which can be repeatedly passed in vitro, are used in most studies. However, wild-type isolates of EIAV will not grow in these cell types without extensive adaptation, a process which may attenuate viral virulence. To better define the effect of host cell tropism on the virulence and pathogenesis of EIAV, we studied a field isolate of EIAV during in vitro adaptation to growth in an ED cell line. Interestingly, as the virus adapted to growth in ED cells, there was a corresponding decrease in infectivity for HMC, and the final ED-adapted isolate was more than 100-fold more infectious for ED cells than for HMC. In vivo studies indicated that the ED-adapted isolate was able to replicate in experimentally infected horses, although no clinical signs of EIA were observed. Thus, selection for in vitro replication on ED cells correlated with a loss of EIAV tropism for HMC in vitro and was associated with avirulence in vivo.  相似文献   

13.
14.
Cell killing by cytopathic retroviruses is often associated with a delay or failure in the establishment of superinfection interference. Superinfection has been observed during T-cell killing and fatal immunodeficiency disease induction by the feline leukemia virus (FeLV) chimera FeLV-FAIDS-EECC, containing the surface envelope glycoprotein (SU) of FeLV-FAIDS clone 61C. We demonstrate here that 61C SU has a defect that results in a nearly complete failure to establish superinfection interference against homologous virus challenge. This failure was evident only in feline T (FeT) cell clones expressing envelope protein, not in the rare cells that have survived cytopathic infection to become chronically infected. The regions of SU responsible for this defect were the same as those previously identified as responsible for T-cell killing. The superinfection interference properties of a noncytophatic molecular clone, FeLV-FAIDS-61E, were different in that 61E established interference to homologous virus challenge, both in SU-expressing cell clones and in chronically infected cells. Neither 61E nor EECC established interference against heterologous virus challenge. Viruses expressing chimeric SU proteins displayed varied and intermediate interference properties. Purified 61E and 61C SU competed for binding sites on FeT cell surfaces, and purified 61E SU blocked infection of virus bearing 61E or 61C SU. In addition, purified 61E and 61C SU each coprecipitated 70-kDa FeT cell surface proteins. Our data are consistent with the hypothesis that there are multiple cellular components necessary for 61E and 61C attachment to and penetration of FeT cells, a primary receptor that is utilized by both 61E and 61C, and secondary receptors that are likely to be virus specific.  相似文献   

15.
Jin S  Chen C  Montelaro RC 《Journal of virology》2005,79(14):8793-8801
We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral mutant (K30) with two fewer amino acids produced replication-defective virus particles, despite containing apparently normal levels of processed Gag and Pol proteins (C. Chen, F. Li, and R. C. Montelaro, J. Virol. 75:9762-9760, 2001). Based on these observations, we sought in the current study to identify the precise defect in K30 virion infection of permissive equine dermal (ED) cells. The results of these experiments clearly demonstrated that K30 virions entered target ED cells and produced early (minus-strand strong-stop) and late (Gag) viral DNA products as efficiently as did the replication-competent E32 mutant and parental EIAV(UK) viruses. However, in contrast to the replication-competent E32 mutant and parental viruses, infection with K30 mutant virus failed to produce detectable two-long-terminal-repeat DNA circles, stable integrated provirus, virus-specific Gag mRNA expression, or intracellular viral protein expression. Taken together, these data demonstrate that the K30 mutant is defective in the ability to produce sufficient nuclear viral DNA to establish a productive infection in ED cells. Thus, these observations indicate for the first time that the EIAV Gag p9 protein performs a critical role in viral DNA production and processing to provirus during EIAV infection, in addition to its previously defined role in viral budding mediated by the p9 L domain.  相似文献   

16.
Ecotropic murine leukemia virus (MuLV) infection is initiated by the interaction between the surface glycoprotein (SU) of the virus and its cell-surface receptor mCAT-1. We investigated the SU-receptor interaction by using a naturally occurring soluble SU which was encoded by the envelope (env) gene of a defective endogenous MuLV, Fv-4(r). Binding of the SU to mCAT-1-positive mouse cells was completed by 1 min at 37 degrees C. The SU could not bind to mouse cells that were persistently infected by ecotropic MuLVs (but not amphotropic or dualtropic MuLVs) or transfected with wild-type ecotropic env genes or a mutant env gene which can express only precursor Env protein that is restricted to retention in the endoplasmic reticulum. These cells were also resistant to superinfection by ecotropic MuLVs. Thus, superinfection resistance correlated with the lack of SU-binding capacity. After binding to the cells, the SU appeared to undergo some conformational changes within 1 min in a temperature-dependent manner. This was suggested by the different properties of two monoclonal antibodies (MAbs) reactive with the same C-terminal half of the Fv-4(r) SU domain, including a proline-rich motif which was shown to be important for conformation of the SU and interaction between the SU and the transmembrane protein. One MAb reacting with the soluble SU bound to cells was dissociated by a temperature shift from 4 to 37 degrees C. Such dissociation was not observed in cells synthesizing the SU or when another MAb was used, indicating that the dissociation was not due to a temperature-dependent release of the MAb but to possible conformational changes in the SU.  相似文献   

17.
18.
Studies of the complete hepatitis C virus (HCV) life cycle have become possible with the development of an infectious cell culture system using the genotype 2a isolate JFH-1. Taking advantage of this system in the present study, we investigated whether HCV infection leads to superinfection exclusion, a state in which HCV-infected cells are resistant to secondary HCV infection. To discriminate between viral genomes, we inserted genes encoding fluorescent proteins in frame into the 3'-terminal NS5A coding region. These genomes replicated to wild-type levels and supported the production of infectious virus particles. Upon simultaneous infection of Huh-7 cells, co-replication of both viral genomes in the same cell was detected. However, when infections were performed sequentially, secondary infection was severely impaired. This superinfection exclusion was neither due to a reduction of cell surface expression of CD81 and scavenger receptor BI, two molecules implicated in HCV entry, nor due to a functional block at the level of virus entry. Instead, superinfection exclusion was mediated primarily by interference at the level of HCV RNA translation and, presumably, also replication. In summary, our results describe the construction and characterization of viable monocistronic HCV reporter genomes allowing detection of viral replication in infected living cells. By using these genomes, we found that HCV induces superinfection exclusion, which is primarily due to interference at a post-entry step.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号