首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
Voltage-dependent conductances in Limulus ventral photoreceptors   总被引:7,自引:7,他引:0       下载免费PDF全文
The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.  相似文献   

2.
In addition to increasing the conductance to sodium, light reduces the maintained voltage-dependent potassium current (iK) in Limulus ventral photoreceptors. We have investigated the mechanism underlying this long-lasting decrease in ik. Intracellular injection of calcium produced a similar reduction of the voltage-dependent outward current. This reduction was not due to an activation of the voltage-dependent inward current (iin) because calcium injection reduced the outward current even under conditions where iin was blocked with Ni2+, and because calcium injection produced a decrease in conductance, as measured from the slope of the instantaneous i-V curve. The effect of light on ik could be blocked by injection of the calcium buffer EGTA (pCa 7.1) to an intracellular concentration of 50-70 mM. Even larger injections of the pH buffer MOPS (100-200 mM) did not reduce the effect of light on ik. These experiments show that intracellular free calcium (Cai2+) can reduce ik. Furthermore, since Cai2+ is known to increase in light, our results are consistent with the hypothesis that calcium is the internal transmitter for the light-induced decrease in ik.  相似文献   

3.
The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance.  相似文献   

4.
The development of membrane electrical properties of oocytes of the starfish Leptasterias hexactis during oogenesis was studied using voltage- and current-clamp techniques. Two voltage-dependent K currents--the fast transient and inwardly rectifying--are present early in oogenesis, before the rapid growth phase, and are maintained throughout oogenesis at the same current density and kinetics. The inward current, which is composed of a Ca current and a slower Ca-dependent inward sodium current, is also present early in oogenesis, but at very low current density. Late in oogenesis, after the oocyte has grown to full size, the inward current increases in amplitude by about fivefold, and undergoes major changes in kinetics. These changes are closely associated with the migration of the germinal vesicle to the cell periphery. The relationship of these events to electrophysiological changes during subsequent maturation and fertilization of the oocytes is discussed.  相似文献   

5.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

6.
Among ionic currents underlying neuronal pacemaker activity, low-threshold-activated calcium currents contribute to setting the threshold for spike firing. In the insect central nervous system, dorsal unpaired median (DUM) neurons are capable of generating spontaneous electrical activity. It has previously been shown that two distinct (transient and maintained) low-voltage-activated (LVA) calcium currents are responsible for the generation of the pacemaker potential. Whole-cell recordings in voltage- and current-clamp mode were obtained from short-term cultured DUM neurons. Using 100 mM sodium and 2 mM calcium as charge carrier in the external solution as well as conditions that eliminate calcium currents (0.5 mM CdCl2), voltage-clamp experiments showed that a hitherto unanticipated LVA maintained inward current, activated at around −60 mV, was present. The current amplitude was strongly dependent on internal ATP concentration. Sodium-free solution reduced by 80% the current amplitude. Increasing (5 mM) or decreasing (calcium-free) external calcium concentrations enhanced or reduced, respectively, the maximum conductance without any effect on the voltage dependence. This novel ion channel was permeable to barium but manipulating internal or external magnesium concentrations was without effect on current amplitude or reversal potential. Based on IC50 values, the maintained current was 50-fold less sensitive to TTX than the classical transient voltage-dependent sodium current. Furthermore, it was insensitive to ethosuximide and halothane. Voltage-dependent inactivation analysis revealed an unexpected calcium-sensitive process that involved calcineurin. From these results it appears that, besides the two LVA calcium currents previously described, another LVA maintained inward current permeable to both sodium and calcium was also involved in the generation of the predepolarization. Based on these findings, we propose that a novel calcium-dependent mechanism is involved in the regulation of the pacemaker activity.  相似文献   

7.
Dissociated embryonic chick dorsal root ganglion (DRG) neurons maintained in culture exhibit a mixed Na+/Ca2+ action potential. The characteristic "shoulder" on the repolarizing phase is due to the relatively prolonged inward Ca2+ current. DRG neurons grown in an elevated K+ medium (25 versus. 5 mM) lack the plateau phase of the action potential. Voltage-clamp analysis showed that this plastic change in action potential duration is not due to the loss of the inward Ca2+ current but is partly due to the appearance of a Ca2(+)-dependent, 4-aminopyridine-(4-AP)-sensitive transient outward current. Faster activation of the purely voltage-dependent delayed rectifier outward current also contributes to the rapid repolarization observed in neurons cultured in elevated K+ medium.  相似文献   

8.
Ionic mechanism of a voltage-dependent current elicited by cyclic AMP   总被引:5,自引:0,他引:5  
Intracellular pressure injection of cyclic AMP induces a slow voltage-dependent inward current in some neurons of Aplysia californica.The time course, voltage dependence, and ionic sensitivities of this response are nearly identical to those of the voltage-dependent calcium current induced by serotonin in the same preparation. The response to cyclic AMP is unaffected by changes in the extracellular concentration of chloride or potassium. The current is slowly but minimally reduced by a sodium-free solution. The calcium channel blocker, cadmium, blocks the current elicited by injection of cyclic AMP. The data presented here suggest that cyclic AMP can induce a voltage-dependent calcium current.  相似文献   

9.
Summary Electrical excitability of the longitudinal ventrolateral body wall muscle of the third instar larva ofDrosophila melanogaster was demonstrated. This is in contrast to previous papers which have reported that this muscle is electrically inexcitable. It was found that an air supply to the muscle through the tracheoles is essential for maintaining its excitability. In an aerated preparation, the muscle maintained a resting potential of around –80 mV for more than 1.5 h, while a nonaerated muscle depolarized to about –30 mV within 30 min. Muscles with resting potentials larger than –70 mV showed graded regenerative potentials with a double-peaked configuration in response to transmembrane depolarizing current. A tetrodotoxin- (TTX-)sensitive, voltage-dependent inward sodium current, and a tetraethylammonium-(TEA-)sensitive, voltage-dependent outward potassium current were found to be responsible for the first peak of the electrogenic response of this muscle. The rising phase of the second peak was caused by a cobalt/manganese-sensitive, voltage-dependent inward calcium current that had a threshold level near –40 mV. Elimination by TEA or barium of the delayed rectification following the first peak caused the second peak to be triggered at a lower threshold. The second peak was profoundly elongated by barium, and this effect was antagonized by external calcium. Thus, the falling phase of the second peak was most likely driven by a calcium-dependent, outward potassium current.  相似文献   

10.
In spermatozoa, voltage-dependent calcium channels (VDCC) have been involved in different cellular functions like acrosome reaction (AR) and sperm motility. Multiple types of VDCC are present and their relative contribution is still a matter of debate. Based mostly on pharmacological studies, low-voltage-activated calcium channels (LVA-CC), responsible of the inward current in spermatocytes, were described as essential for AR in sperm. The development of Ca(V)3.1 or Ca(V)3.2 null mice provided the opportunity to evaluate the involvement of such LVA-CC in AR and sperm motility, independently of pharmacological tools. The inward current was fully abolished in spermatogenic cells from Ca(V)3.2 deficient mice. This current is thus only due to Ca(V)3.2 channels. We showed that Ca(V)3.2 channels were maintained in sperm by Western-blot and immunohistochemistry experiments. Calcium imaging experiments revealed that calcium influx in response to KCl was reduced in Ca(V)3.2 null sperm in comparison to control cells, demonstrating that Ca(V)3.2 channels were functional. On the other hand, no difference was noticed in calcium signaling induced by zona pellucida. Moreover, neither biochemical nor functional experiments, suggested the presence of Ca(V)3.1 channels in sperm. Despite the Ca(V)3.2 channels contribution in KCl-induced calcium influx, the reproduction parameters remained intact in Ca(V)3.2 deficient mice. These data demonstrate that in sperm, besides Ca(V)3.2 channels, other types of VDCC are activated during the voltage-dependent calcium influx of AR, these channels likely belonging to high-voltage activated Ca(2+) channels family. The conclusion is that voltage-dependent calcium influx during AR is due to the opening of redundant families of calcium channels.  相似文献   

11.
The inward-rectifying K+ current (IK1) in cat ventricular myocytes, like inward-rectifying K+ currents in many other preparations, exhibited a negative slope conductance region at hyperpolarized membrane potentials that was time-dependent. This was evident as an inactivation of inward current elicited by hyperpolarizing voltage-clamp pulses resulting in a negative slope region of the steady-state current-voltage relationship at potentials negative to -140 mV. Removing extracellular Na+ prevented the development of the negative slope in this voltage region, suggesting that Na+ can block IK1 channels in a time- and voltage-dependent manner. The time and voltage dependence of Cs+-induced block of IK1 was also examined. Cs+ blocked inward current in a manner similar to that of Na+, but the former was much more potent. The fraction of current blocked by Cs+ in the presence of Na+ was reduced in a time- and voltage-dependent manner, which suggested that these blocking ions compete for a common or at least similar site of action. In the absence of Na+, inactivation of IK1 could also be induced by both Cs+ and Li+. However, Li+ was less potent than Na+ in this respect. Calculation of the voltage sensitivity of current block by each of these ions suggests that the mechanism of block by each is similar.  相似文献   

12.
Guard cells are electrically isolated from other plant cells and therefore offer the unique possibility to conduct current- and voltage-clamp recordings on single cells in an intact plant. Guard cells in their natural environment were impaled with double-barreled electrodes and found to exhibit three physiological states. A minority of cells were classified as far-depolarized cells. These cells exhibited positive membrane potentials and were dominated by the activity of voltage-dependent anion channels. All other cells displayed both outward and inward rectifying K+-channel activity. These cells were either depolarized or hyperpolarized, with average membrane potentials of -41 mV (SD 16) and -112 mV (SD 19), respectively. Depolarized guard cells extrude K+ through outward rectifying channels, while K+ is taken up via inward rectifying channels in hyperpolarized cells. Upon a light/dark transition, guard cells that were hyperpolarized in the light switched to the depolarized state. The depolarization was accompanied by a 35 pA decrease in pump current and an increase in the conductance of inward rectifying channels. Both an increase in pump current and a decrease in the conductance of the inward rectifier were triggered by blue light, while red light was ineffective. From these studies we conclude that light modulates plasma membrane transport through large membrane potential changes, reversing the K+-efflux via outward rectifying channels to a K+-influx via inward rectifying channels.  相似文献   

13.
Enhancement of inward current by serotonin in neurons of Aplysia   总被引:1,自引:0,他引:1  
In RB cells of Aplysia, serotonin, in the presence of TEA, 4AP and Ba, elicits a voltage-dependent inward current. In Ba-TEA-4AP seawater, RB cells showed a negative slope region (NSR) in their current-voltage (I-V) relationship when measured at the end of 2-s commands from a holding potential of -60 mV. Addition of serotonin to the bathing solution enhanced the NSR. When holding potential was lowered to -10 mV, the NSR as well as the effects of serotonin were greatly reduced. Addition of 20 mM cobalt to the bathing solution blocked both the NSR and the inward current produced by serotonin. Changes in potassium concentration produced no consistent shift in voltage sensitivity nor change in amplitude of the current elicited by serotonin. Intracellular injection of cesium sufficient to broaden action potentials did not block the enhancement of NSR by serotonin. These results support the conclusion that in RB cells, serotonin produces a voltage-dependent current carried by calcium ions.  相似文献   

14.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

15.
In the present study, we measured an electric current induced by substrate transport in a HeLa cell over-expressing a human intestinal di/tri-peptide transporter using the whole-cell patch-clamp technique. Gly-Sar, a typical substrate, induced an inward current associated with its uptake, which showed concentration-dependency following Michaelis-Menten-type kinetics with an apparent K(0.5) of 1.3mM as well as voltage-dependency. An outward current accompanying the efflux of Gly-Sar was also observed after washing out the cell. This outward current was voltage-dependent and was reduced by the inward proton gradient. In the case of hydrophobic dipeptides such as Gly-Phe and Gly-Leu, a distinctive current was observed: after washing out the cells, no outward current was observed, but rather, an 'inward leak' current was sustained in spite of the absence of transportable substrate. This leaky current was abolished by the perfusion of Gly-Sar and subsequent washing. It is considered that the hydrophobic substrate sticks within the substrate-binding site and causes the newly observed state, or the 'inward leak' current.  相似文献   

16.
Ca2+ current and tension have been simultaneously recorded from single twitch fibres of the semi-tendinosus of Rana esculenta in a medium containing a physiological Ca2+ concentration (1.8 mM). Under appropriate conditions it can be shown that tension develops in two phases. The first is rapid and reaches its maximum before activation of the inward Ca2+ current. The second phase is slower and with a time course which appears to be correlated with that of the inward current. Nifedipine, a specific Ca2+ channel inhibitor greatly reduced ICa2+ and the slower component of tension. Bay K8644 a Ca2+ channel activator, which has receptors on T-tubule, increased ICa2+ and the slow component of tension. These results indicate that a slow component of skeletal muscle contraction is related to the inward Ca2+ current flowing through dihydropyridine sensitive voltage-dependent Ca2+ channels.  相似文献   

17.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

18.
The mode of action of the cholinergic antagonist hexamethonium on the excitatory responses of voltage-clamped Aplysia neurons to acetylcholine (ACh) has been examined by voltage- and concentration-jump relaxation analysis. At steady-state concentrations of ACh hyperpolarizing command steps induced inward current relaxations to a new steady-state level (Iss). The time constants of these inward relaxations, tau f, which approximate the mean single-channel lifetime, were increased both by increasing the membrane potential and by lowering the bath temperature (Q10 = 3) but were not affected by increasing the ACh concentration over the dose range employed. In the presence of hexamethonium hyperpolarizing command steps produced biphasic relaxations of the agonist-induced current. tau f was reduced in a voltage-dependent manner, the degree of reduction increasing with hyperpolarization. Slow, inverse relaxations were also triggered in the presence of hexamethonium. The time constant of this relaxation was reduced by increasing membrane potential and hexamethonium concentration. Both the estimated association (kf = 5 X 10(4) M-1 . sec-1) and the estimated dissociation (kb = 0.24-0.29 sec-1) rate constants derived from a three-state sequential model for block by hexamethonium were independent of the membrane potential. Similar rate constants were estimated from experiments with the concentration-jump technique, which were also independent of the membrane potential over the range -50 to -110 mV. It is suggested that the voltage-dependent actions of hexamethonium may originate either from an alteration of the channel opening and closing rate constants through an allosteric interaction with the ACh receptor, rather than through an influence of the transmembrane electric field on the rate of drug binding, or through a fast reaction which is rate-limited by voltage-independent diffusion.  相似文献   

19.
Frog skeletal muscle has a K+ channel called the inward rectifier, which passes inward current more readily than outward current. Gay and Stanfield (1977) described a voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+ in frog muscle. Here, frog single muscle fibers were voltage clamped using the vaseline-gap voltage-clamp technique to study the effect of external [K+] on the voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+. The block of inward K+ currents through the channel by external Cs+ was found to depend on external [K+], such that increasing the external concentration of the permeant ion K+ potentiated the block produced by the impermeant external Cs+. These findings are not consistent with a one-ion channel model for the inward rectifier. The Eyring rate theory formalism for channels, viewed as single-file multi-ion pores (Hille and Schwarz, 1978), was used to develop a two-site multi-ion model for the inward rectifier. This model successfully reproduced the experimentally observed potentiation of the Cs+ block of the channel by external K+, thus lending further support to the view of the inward rectifier as a multi-ion channel.  相似文献   

20.
Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号