首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior to fertilization, mammalian spermatozoa need to acquire fertilizing ability (capacitation) in the female reproductive tract. On the other hand, capacitated spermatozoa reversibly lose their capacitated state when treated with seminal plasma (decapacitation). Previously, we demonstrated that a mouse seminal plasma protein, SVS2, is a decapacitation factor and regulates sperm fertilizing ability in vivo. Here, we examined the mechanisms of regulation of fertilizing ability by SVS2. Capacitation appears to be mediated by dynamic changes in lipid rafts since release of the cholesterol components of lipid rafts in the sperm plasma membrane is indispensable for capacitation. When the ejaculated spermatozoa were stained with a cholera toxin subunit B (CTB) that preferably interacts with ganglioside GM1, another member of the lipid rafts, the staining pattern of the sperm was the same as the binding pattern of SVS2. Interestingly, SVS2 and CTB competitively bound to the sperm surface with each other, suggesting that the binding targets of both molecules are the same, that is, GM1. Molecular interaction studies by the overlay assay and the quartz crystal microbalance analysis revealed that SVS2 selectively interacts with GM1 rather than with other gangliosides. Furthermore, external addition of GM1 nullified SVS2-induced sperm decapacitation. Thus, ganglioside GM1 is a receptor of SVS2 and plays a crucial role in capacitation in vivo.  相似文献   

2.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

3.
Abstract: Exogenous gangliosides, especially ganglioside GM1 (GM1), seem to potentiate the action of nerve growth factor (NGF). We have examined the possible regulation of the NGF signaling pathway in PC12 cells by the B subunit of cholera toxin (CTB), which binds to endogenous GM1 specifically and with a high affinity. CTB treatment (1 μg/ml) enhanced NGF-induced neurite outgrowth from PC12 cells, NGF-induced activation of ribosomal protein S6 kinase, and NGF-induced stimulation of trk phosphorylation. CTB plus NGF also caused a greater inhibition of [3H]-thymidine incorporation into DNA than did NGF alone. These enhancing effects of CTB were blocked by the presence of cytochalasin B in the culture medium but were not affected by the presence of colchicine or by the depletion of Ca2+ in the medium. 125I-NGF binding experiments revealed that CTB treatment did not affect the specific binding of NGF to the cells. These results strongly suggest that the binding of cell surface GM1 by CTB modulates the pathway of intracellular signaling initiated by NGF and that the association of CTB with a cytoskeletal component is essential for these effects.  相似文献   

4.
Little is known about the organization of lipids in biomembranes. Lipid rafts are defined as sphingolipid- and cholesterol-rich clusters in the membrane. Details of the lipid distribution of lipid rafts are not well characterized mainly because of a lack of appropriate probes. Ganglioside GM1-specific protein, cholera toxin, has long been the only lipid probe of lipid rafts. Recently it was shown that earthworm toxin, lysenin, specifically recognizes sphingomyelin-rich membrane domains. Binding of lysenin to sphingomyelin is accompanied by the oligomerization of the toxin that leads to pore formation in the target membrane. In this study, we generated a truncated lysenin mutant that does not oligomerize and thus is non-toxic. Using this mutant lysenin, we showed that plasma membrane sphingomyelin-rich domains are spatially distinct from ganglioside GM1-rich membrane domains in Jurkat T cells. Like T cell receptor activation and cross-linking of GM1, cross-linking of sphingomyelin induced calcium influx and ERK phosphorylation in the cell. However, unlike CD3 or GM1, cross-linking of sphingomyelin did not induce significant protein tyrosine phosphorylation. Combination of lysenin and sphingomyelinase treatment suggested the involvement of G-protein-coupled receptor in sphingomyelin-mediated signal transduction. These results thus suggest that the sphingomyelin-rich domain provides a functional signal cascade platform that is distinct from those provided by T cell receptor or GM1. Our study therefore elucidates the spatial and functional heterogeneity of lipid rafts.  相似文献   

5.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

6.
The potential involvement of gangliosides in the adherence and neurite extension of human neuroblastoma cells (Platt and La-N1) was investigated on tissue culture substrata coated with the ganglioside GM1-binding protein, cholera toxin B (CTB) subunit, for comparison with similar processes on plasma fibronectin (pFN)-coated substrata. Cells attached with reduced efficiency on CTB substrata as compared with pFN substrata and required a much longer time to form neurite processes for a small percentage of cells on CTB. The specificity of these processes for GM1 binding was tested in a variety of ways. Supplementation of the cells with exogenous GM1, but not GD1a, identified a larger population of cells adherent on CTB (comparable to pFN-adherent cells) and dramatically increased the proportion of cells capable of forming neurites without reducing the time requirement. In ultrastructural studies using the scanning electron microscope (SEM) and immunofluorescence (IF) analyses to discriminate microtubule distributions, neurites of GM1-supplemented cells on CTB were virtually identical with pFN-adherent neurites, whereas unsupplemented cells on CTB generated processes with fine-structural differences. Treatment of cells during the GM1 supplementation period with cycloheximide completely abolished the ability of cells to generate neurites on CTB and decreased the adhesive capacity of cells as well; a similar treatment of cells had no adverse effect on adherence or neurite extension on pFN. The importance of one or more proteins in GM1-dependent processes was further confirmed by demonstrating the trypsin sensitivity of a cell surface component(s) required to achieve maximal attachment on CTB; in contrast, adherence and neurite extension on pFN were much more resistant to this treatment process. Therefore, these experiments demonstrate (a) that certain cell surface gangliosides are capable of mediating adherence and neurite outgrowth of human neuroblastoma cells on a suitable ganglioside-binding substratum; (b) this ganglioside dependence is cooperative with one or more cell surface proteins which can now be analysed. These results are discussed in light of the identification in ref. [16] (Exp cell res 169 (1987) 311) of a second ‘cell-binding’ domain on the pFN molecule competent for adherence and neurite extension of these neuroblastoma cells, as well as the potential role of pFN binding to a complex ganglioside on the surface of these neural tumor cells in these processes.  相似文献   

7.
BACKGROUND: Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation. Apoptotic neutrophils undergo specific alterations in their receptor profiles. These alterations are likely to contribute to the characteristic functional silencing of the dying cells. METHODS: By flow cytometry and fluorescence microscopy, we analyzed the ganglioside GM1, a lipid raft marker, with respect to its surface expression on neutrophil and eosinophil granulocytes. Apoptosis was monitored by morphological changes and by the binding of annexin V-phycoerythrin (AxV-PE). RESULTS: GM1, which was stained by the cholera toxin subunit B, was found only on neutrophil granulocytes; eosinophil granulocytes did not bind cholera toxin subunit B. GM1 was lost from the surfaces of neutrophils before AxV-PE binding (early apoptosis). Surprisingly, GM1 reappeared during the late stages of apoptosis, although without functional consequences. GM1 was found on the cell surface and in intracellular membranes, whereas CD16 was found only at the cell surface. CONCLUSIONS: Loss of surface GM1 is a new marker for the detection of the aging of neutrophils. Its loss precedes the binding of AxV-PE of neutrophils.  相似文献   

8.
The use of the B subunit of cholera toxin, a protein that binds specifically to ganglioside GM1, has provided a new paradigm for studying physiological functions of ganglioside GM1. The B subunit inhibited the growth of rat glioma C6 cells that had been pretreated with ganglioside GM1. In some preparations of the B subunit, the inhibition was independent of adenylate cyclase activation and was due to the binding of the B subunit to ganglioside GM1 inserted onto the cell surface. However, in other preparations of the B subunit, there was an additional inhibitory effect due to small contaminations with the A subunit, which caused increases in intracellular cyclic adenosine monophosphate (cAMP) levels and concomitant growth inhibition. This vanishingly small contamination with the A subunit could not be detected by conventional protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis but could be measured utilizing a sensitive adenylate cyclase activation assay. Thus caution must be used to ensure that any biological effects of the B subunit are not due to contaminating A subunit and are due solely to the binding of the B subunit to ganglioside GM1 exposed on the cell surface. This is especially important in cyclic nucleotide-sensitive systems.  相似文献   

9.
The acidic glycosphingolipid, ganglioside GM1, which is the binding site for cholera toxin on many cell types, was identified by chemical and by flow cytometric analyses of mouse interleukin 3-dependent, bone marrow culture-derived mast cells (BMMC). Ganglioside GM1 and other acidic glycosphingolipids were isolated from BMMC by chloroform/methanol extraction and chromatography on DEAE-Sephadex and were analyzed by thin layer chromatography. The presence of ganglioside GM1 in the BMMC extract was demonstrated by its co-migration with ganglioside GM1 standard in thin layer chromatography and by the binding of peroxidase-labeled cholera toxin B subunit to both molecules. As assessed by fluorescence flow cytometric analysis of the binding of fluorescein-conjugated cholera toxin B subunit, the majority of BMMC expressed ganglioside GM1 on their surface, and the total presentation per cell increased as cells progressed from the G1 to S to G2 + M phases of the cell cycle. The addition of increasing amounts of cholera toxin starting with 0.08 microgram/ml to BMMC cultured in 50% WEHI 3-conditioned medium containing IL 3 for 48 hr caused the adhesion of BMMC to the tissue culture flasks to increase in a dose-related manner, from less than 1% adherent cells in cultures without toxin to a plateau value of approximately 17% adherent in the presence of 1.25 micrograms/ml of toxin. The histamine content of BMMC increased from 26.7 +/- 3.59 ng/10(6) cells (mean +/- SD, n = 4) for control cultures to 201 +/- 17.4 ng/10(6) cells (mean +/- SD, n = 4) for nonadherent cells and to 588 +/- 89.4 ng/10(6) cells (mean +/- SD, n = 4) for adherent cells after 48 hr of culture in 0.31 microgram/ml cholera toxin, which was the optimal dose for nonadherent and adherent populations. The content of another preformed intragranular mediator, beta-hexosaminidase, did not increase appreciably in the presence of cholera toxin (n = 3). The increase in the histamine content of BMMC after the addition of 0.31 microgram/ml cholera toxin was detectable at 4 hr, plateaued by 24 to 48 hr, and gradually declined over the next 6 days. Cholera toxin also augmented the histamine content of BMMC in the presence of purified synthetic IL 3. Preincubation of whole cholera toxin with purified ganglioside GM1 inhibited the histamine-augmenting effects of cholera toxin on BMMC, indicating that the effect was not due to a contaminant, and neither the A nor B subunit of cholera toxin alone increased the histamine content of BMMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Using the cholera toxin B subunit (CTB) that specifically binds to ganglioside GM1a on the plasma membrane, we investigated intracellular signaling mediated by endogenous GM1a involved in neuronal differentiation of PC12 cells. The treatment with CTB induced morphological alternations of PC12 cells, such as augmentation of the cell body, neurite extension, and branched spikes of tips of neurites. The neurite extension induced with CTB was strongly suppressed by the pretreatment of tyrosine kinase inhibitors in a dose-dependent manner. Western blotting analysis showed that CTB induced tyrosine phosphorylation of several cellular proteins with molecular masses around 120, 70, and 45-40 kDa in PC12 cells. Some of the proteins identified were extracellular-signal regulated kinase (ERKs) (ERK1 and ERK2). The peak activation of ERKs lasted for 60-90 min and gradually decreased thereafter. Immunoprecipitation analysis demonstrated that the intracellular events induced with CTB are not related with the activation of Trk proteins, suggesting that signals evoked by ligation of endogenous GM1a are unique and distinct from those induced with exogenous GM1a. Although the presence of a tyrosine kinase inhibitor, genistein, at a concentration of 10 microM diminished the neurite extension of PC12 cells induced with CTB, ERK activation was still observed. However, pretreatment with a MEK inhibitor, PD98059, abolished the activation of ERKs induced with CTB in a dose-dependent manner and only attenuated the morphological alternations of PC12 cells. Considered together, we concluded that tyrosine phosphorylation induced with CTB was responsible for neuron-like differentiation of PC12 cells and that the MEK-ERK cascade is part of the biological signals mediated by endogenous ganglioside GM1a on PC12 cells.  相似文献   

11.
Three variants of the liposome fusion (coalescence) method to produce supported lipid bilayers, containing the ganglioside GM1 on silicon nitride surfaces, were studied. The first procedure involved attachment and fusion of liposomes containing DMPC, GM1 and a small amount of biotinylated lipid (Biotin-LC-DPPE) to a streptavidin coated surface. Direct fusion of liposomes composed of a mixture of DPPC, DPPG, DPPE, GM1 and cholesterol to the surface were the second variant. The final method utilised the second type of liposomes, fused onto a streptavidin layer with a small amount of exposed hydrophobic tails. The methods produced similar lipid layers, but with different ways of attachment to the surface. The binding of cholera toxin B-subunit (CTB) towards these sensor surfaces was measured in a resonant mirror biosensor instrument and the activity and longer-term stability of the layers were examined. The prepared surfaces were also imaged by atomic force microscopy (AFM) in liquid to characterise the topography of the lipid layers. The binding efficiency of CTB towards these surfaces was discussed in terms of lipid fluidity and surface roughness.  相似文献   

12.
Recent studies show that markers for lipid rafts are among the plasma membrane components most likely to be internalized independently of clathrin-coated pits, and there is evidence to suggest that lipid rafts may play a functional role in endocytic trafficking [1-5]. However, lipid rafts themselves are commonly defined purely in biochemical terms, by resistance to detergent extraction. The existence of rafts in live-cell membranes remains controversial [6-8], and their distribution relative to endocytic machinery has not been investigated. This study employs fluorescence resonance energy transfer (FRET) to show that in the plasma membrane (PM) of living cells the glycosphingolipid GM1, labeled with cholera toxin B subunit (CTB) [9,10], is found at least in part within clusters that also include GPI-linked proteins. These clusters are cholesterol-dependent and exclude non-raft proteins such as transferrin receptor and so possess predicted properties of lipid rafts. This type of lipid raft is largely excluded from clathrin-positive regions of the PM. They are found within Caveolin-positive regions at the same concentration as at the rest of the cell surface. The data provide evidence for a model in which lipid rafts are distributed uniformly across most of the PM of nonpolarized cells but are prevented from entering clathrin-coated pits.  相似文献   

13.
The membrane-curvature dependent lateral distribution of outer leaflet ganglioside GM1 (GM1) and the influence of GM1 cross-linking induced by fluorophore-tagged cholera toxin subunit B (CTB) plus anti-CTB was analysed in cell membranes by fluorescence microscopy. Data are presented indicating that cross-linked GM1-ligand patches accumulated at the tips of human erythrocyte echinocytic spiculae induced by Ca(2+)/ionophore A23187. However, when lipid fixative osmium tetroxide was added prior to the ligand no accumulation in spiculae occurred. GM1-staining remained here distributed over the spheroid cell body and in spiculae. Similarly, osmium tetroxide completely prohibited CTB plus anti-CTB-induced GM1 patching in representatives for flat membrane, i.e. discoid erythrocytes and K562 cells. Our results demonstrate that GM1 per se shows low membrane curvature dependent distribution and therefore holds flexible spontaneous curvature. In contrast, the cross-linked GM1-ligand complex has a strong preference for highly outward curved membrane and possesses overall positive spontaneous curvature. Osmium tetroxide efficiently immobilises GM1.  相似文献   

14.
Abstract We have constructed a very efficient synthesis and secretion system for cholera toxin B subunit (CTB) of Vibrio cholerae 569B using Bacillus brevis . The constructed expression-secretion vector has the multiple promoters and the signal peptide coding region of the mwp gene, a structural gene for one of the major cell wall proteins of B. brevis strain 47, directly followed by the gene encoding the mature CTB. A large amount of mature CTB (1.4 g per liter of culture) was secreted into the medium. It had the same amino terminal amino acid sequence as that of authentic CTB and was fully active in GM1 ganglioside binding assay.  相似文献   

15.
The inhibition of human CD4+ T lymphocyte activation and proliferation by cholera toxin B-subunit (CTB) is a well-established phenomenon; nevertheless, the exact mechanism remained unclear. In the present study, we propose an explanation for the rCTB-induced inhibition of CD4+ T lymphocytes. rCTB specifically binds to GM1, a raft marker, and strongly modifies the lipid composition of rafts. First, rCTB inhibits sphingomyelin synthesis; second, it enhances phosphatidylcholine synthesis; and third, it activates a raft-resident neutral sphingomyelinase resembling to neutral sphingomyelinase type 1, thus generating a transient ceramide production. We demonstrated that these ceramides inhibit protein kinase Calpha phosphorylation and its translocation into the modified lipid rafts. Furthermore, we show that rCTB-induced ceramide production activate NF-kappaB. Combined all together: raft modification in terms of lipids, ceramide production, protein kinase Calpha inhibition, and NF-kappaB activation lead to CD4+ T cell inhibition.  相似文献   

16.
Subclones of F11 neuronal hybrid cells (neuroblastoma x dorsal root ganglion neurons) have segregated differing and/or overlapping neuritogenic mechanisms on three substrata--plasma fibronectin (pFN) with its multiple receptor activities, cholera toxin B subunit (CTB) for binding to ganglioside GM1, and platelet factor-4 (PF4) for binding to heparan sulfate proteoglycans. In this study, specific cell surface receptor activities for the three substrata were tested for their modulation during neuritogenesis by several experimental paradigms, using F11 subclones representative of three differentiation classes (neuritogenic on pFN only, on CTB only, or on all three substrata). When cycloheximide was included in the medium to inhibit protein synthesis during the active period, neurite formation increased significantly for all subclones on all three substrata, virtually eliminating substratum selectivity for differentiation mediated by cell surface integrin, ganglioside GM1, or heparan sulfate proteoglycans. Therefore, one or more labile proteins (referred to as disintegrins) must modulate functions of matrix receptors (e.g., integrins) mediating neurite formation. To verify whether cycloheximide-induced neuritogenesis was also regulated by integrin interaction with cell surface GM1, two approaches were used. When (Arg-Gly-Asp-Ser)-containing peptide A was added to the medium, it completely inhibited cycloheximide-induced neuritogenesis on all three substrata of all subclones, indicating stringent requirement for cell surface integrin function in these mechanisms. In contrast, when CTB or a monoclonal anti-GM1 antibody was also added to the medium, cycloheximide-induced neuritogenesis was amplified further on pFN and sensitivity to peptide A inhibition was abolished. Therefore, in some contexts ganglioside GM1 must complex with integrin receptors at the cell surface to modulate their function. These results also indicate that (a) cycloheximide treatment leads to loss of substratum selectivity in neuritogenesis, (b) this negative regulation of neurite outgrowth is affected by integrin receptor association with labile regulatory proteins (disintegrins) as well as with GM1, and (c) complexing of GM1 by multivalent GM1-binding proteins shifts neuritogenesis from an RGDS-dependent integrin mechanism to an RGDS-independent receptor mechanism.  相似文献   

17.
The heterologous surface expression of the cholera toxin B subunit (CTB) from Vibro cholerae in two staphylococcal species, Staphylococcus xylosus and Staphylococcus carnosus, has been investigated. The gene encoding native CTB (103 amino acids) was introduced into gene constructs encoding chimeric receptors designed to be translocated and anchored on the outer cell surface of the staphylococci. Since functionality of CTB is correlated with its ability to form pentamers and the capacity of the pentameric CTB to bind the GM1 ganglioside, both the surface accessibility and the functionality of the surface-displayed CTB receptors were evaluated. It could be concluded that the chimeric receptors were targeted to the cell wall of the staphylococci, since they could be released by lysostaphin treatment and, after subsequent affinity purification, identified as full-length products by immunoblotting. Surface accessibility of the chimeric receptors was demonstrated by a colorimetric assay and by immunofluorescence staining with a CTB-reactive rabbit antiserum. Pentamerization was investigated by using a monoclonal antibody described to be specific for pentameric CTB, and the functionality of the receptors was tested in a binding assay with digoxigenin-labelled GM1. It was concluded that functional CTB was present on both types of staphylococci, and for S. carnosus, the reactivity to the pentamer-specific monoclonal antibody and in the GM1 binding assay was indeed significant. The implications of the results for the design of live bacterial vaccine delivery systems intended for administration by the mucosal route are discussed.  相似文献   

18.
FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.  相似文献   

19.
An aminoacyl-tRNA synthetase subunit, p43, was previously demonstrated to be released from mammalian cells, and to function as an extracellular regulator of both angiogenesis and inflammatory responses (Ko et al., [2001] J Biol Chem, 276; 23028; Park et al.[2002], J Biol Chem 277; 45243). Here, we report that p43 is internalized to the endothelial cells via lipid rafts. Exogenous p43 was co-localized on bovine aorta endothelial cells with cholera toxin B (CTB), which binds to cholesterol-enriched lipid rafts. The p43 was rapidly internalized to the cells, as early as 5 min after binding to the surfaces of the cells. p43 bound to the isolated lipid rafts, and its interaction with the lipid rafts, was prevented by high salt content, but not by detergent. This suggests that ionic bonds are involved in the molecular association of p43 with the lipid rafts. Taken together, we conclude that p43 binds to the endothelial cell surface via lipid rafts.  相似文献   

20.
Cholesterol depletion has been shown to increase mitogen-activated protein kinase activation in response to stimulation with epidermal growth factor (EGF) (Furuchi, T., and Anderson, R. G. W. (1998) J. Biol. Chem. 273, 21099-21104). However, the underlying mechanisms are unknown. We show that cholesterol depletion increases EGF binding, whereas cholesterol loading lowers EGF binding. Based on binding analyses, we demonstrate that the observed changes in EGF binding are caused by alterations in the number of EGF receptors available for ligand binding, whereas the affinity of the receptor for EGF remains unaltered. We also show by immunofluorescence that in unstimulated cells the EGF receptor is localized in non-caveolar lipid rafts containing the ganglioside GM1 and that patching of these rafts by cholera toxin B-chain causes co-patching of EGF receptors. Experiments with solubilization in different detergents at 4 degrees C show that the association of the EGF receptor with these rafts is sensitive to Triton X-100 extraction but insensitive to extraction with another non-ionic detergent, Brij 58. Furthermore, experiments with cholesterol-depleted cells show that the association is cholesterol-dependent. We propose that non-caveolar lipid rafts function as negative regulators of EGF receptor signaling by sequestering a fraction of the EGF receptors in a state inaccessible for ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号