首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccines for colorectal cancer.   总被引:1,自引:0,他引:1  
Despite recent advances in the treatment of colorectal cancer, the overall survival rate for those patients with advanced locoregional disease remains less than 50%. Although adjuvant systemic chemotherapy has improved survival of these patients, more effective therapies are needed. Immunotherapy is an approach that could have a particular role in the adjuvant therapy of colorectal cancer. There is now convincing evidence that the immune system can specifically recognize and destroy malignant cells. Although both antibody- and T-cell-mediated anti-tumor responses have been documented, the cellular immune response with its direct cytotoxic mechanisms is felt to be the principal anti-tumor arm of the immune system. Analysis of the T cells that recognize tumors has led to the identification and characterization of many tumor-associated antigens including several colorectal antigens. Current approaches to developing a vaccine for colorectal cancer use our expanded understanding of these tumor-associated antigens and the conditions that allow development of an effective cellular immune response to them.  相似文献   

2.
Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential.  相似文献   

3.
Current immunosuppression protocols, although often effective, are nonspecific and therefore hazardous. Consequently, immunological tolerance that is antigen specific and does not globally depress the patient's immune system has become one of the Holy Grails of immunology. Since the discovery that cytokines have immunomodulatory effects, extensive research has investigated the potential of these molecules to induce and maintain specific immunological tolerance in the context of transplantation, allergy and autoimmunity. In this article, we review the possible mechanisms by which cytokines can modulate the immune response and the animal models that frequently confound the theory that a single cytokine, or group of cytokines, can induce tolerance in a predictable manner. Finally, we discuss the role of cytokines at a paracrine level, particularly in the context of inducing and maintaining antigen-specific, regulatory T cells with the clinical potential to suppress specific immune responses.  相似文献   

4.
The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.  相似文献   

5.
The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.  相似文献   

6.
Each year, breast cancer accounts for more than 400,000 new cancer cases and more than 130,000 cancer deaths in Europe. Prognosis of nonmetastatic breast cancer patients is directly related to the extent of the disease, mainly nodal spreading and tumor size, and to the molecular profile, particularly HER2 over-expression. In patients with HER2-over-expressing tumors, different studies have shown cellular and/or humoral immune responses against HER2 associated with a lower tumor development at early stages of the disease. These findings have led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-over-expressing tumor growth. Taken together with the clinical efficiency of trastuzumab-based anti-HER2 passive immunotherapy, these observations allowed to envisage various vaccine strategies against HER2. The induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be either composed of tumoral allogenic cells or autologous cells, or specific to HER2. It can be delivered by dendritic cells or in a DNA, peptidic or proteic form. Another area of research concerns the use of anti-idiotypic antibodies mimicking HER2.  相似文献   

7.
Ovarian cancer accounts for only 3% of all cancers in women, but it causes more deaths than any other gynecologic cancer. Treatment with chemotherapy and cytoreductive surgery shows a good response to the therapy. However, in a large proportion of the patients the tumor grows back within a few years. Cancer stem cells, that are less responsive to these treatments, are blamed for this recurrence of disease. Immune therapy either cellular or humoral is a novel concept to treat cancer. It is based on the notice that immune cells invade the tumor. However, the tumor invest heavily to escape from immune elimination by recruiting several immune suppressive mechanisms. These processes are normally in place to limit excessive immune activation and prevent autoimmune phenomena. Here, we discuss current knowledge about the immune (suppressive) status in ovarian cancer. Moreover, we discuss the immunological targets of ovarian cancer stem cells.  相似文献   

8.
This article is part of a Special Issue “Estradiol and Cognition”.Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic “makeup” of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.  相似文献   

9.
Since their efficiency to treat graft versus host disease has been proven, mesenchymal stem cells (MSC) represent a promising cell therapy approach for the treatment of immune disorders. In this context, much attention has focused on their mechanisms of action, in particular once the fact that their immune properties are also crucial for their efficiency in regenerative medicine was demonstrated. By their production of various and redundant soluble factors, MSC exert powerful anti-inflammatory and immunosuppressive effects targeting the main immune cell subsets. These immunoregulatory properties are essentially inducible by inflammatory mediators. In addition, it is now clear that allogeneic MSC are not immunoprivileged in immunocompetent recipient in agreement with their low persistence in vivo. They should thus display an early "touch-and-go" effect involving both direct interactions with recruited immune effectors and further amplification of this immunosuppression process through activation or conditioning of other regulatory immune cells. A better understanding of immunological properties of MSC will clearly improve their use in clinical settings.  相似文献   

10.
The application of xenotransplantation faces daunting immunological hurdles, some of which might be overcome with the induction of tolerance. Porcine organs transplanted into primates are subject to several types of rejection responses. Hyperacute rejection mediated by naturally occurring xenoreactive antibodies and complement can be overcome without tolerance. Acute vascular rejection and cellular rejection, however, may present important opportunities for immunological tolerance, and humoral rejection might be approached by various mechanisms including (i) clonal deletion, (ii) anergy, (iii) immune deviation, (iv) induction of immunoregulatory or suppressor cells, or (v) veto cells. B-cell tolerance, useful for preventing humoral rejection, might be approached through clonal anergy. It remains to be determined, however, whether tolerance induction is required for xenotransplantation and by which means the various mechanisms of tolerance can be applied in the setting of xenotransplantation. Regardless, the study of tolerance will surely expand understanding of the physiology and pathophysiology of the immune system.  相似文献   

11.
Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.  相似文献   

12.
Interferons-alpha (IFN-alpha) are pleiotropic cytokines belonging to type I IFNs, extensively used in the treatment of patients with some types of cancer and viral disease. IFN-alpha can affect tumor cell functions by multiple mechanisms. In addition, these cytokines can promote the differentiation and activity of host immune cells. Early studies in mouse tumor models showed the importance of host immune mechanisms in the generation of a long-lasting antitumor response after treatment of the animals with IFN-alpha/beta. Subsequently, an ensemble of studies based on the use of genetically modified tumor cells expressing specific IFN molecules provided important information on the host-mediated antitumor mechanisms induced by the local production of IFN-alpha. Of note, several studies have then underscored new immunomodulatory effects of IFN-alpha, including activities on T cells and dendritic cells, which may lead to IFN-induced antitumor immunity. In addition, recent reports on new immune correlates in cancer patients responding to IFN-alpha represent additional evidence on the importance of the interactions of IFN-alpha with the immune system for the generation of a durable antitumor response. On the whole, this knowledge suggests the advantage of using these cytokines as adjuvants of cancer vaccines and for the in vitro generation of highly active dendritic cells to be utilized for therapeutic vaccination of cancer patients.  相似文献   

13.
Cellular immune therapy for severe autoimmune diseases can now be considered when such patients are refractory to conventional treatment. The use of autologous stem cell transplantation (ASCT) to treat human autoimmune diseases has been initiated following promising results in a variety of animal models. Anecdotal observations have been made of autoimmune disease remission in patients who have undergone allogeneic bone marrow transplantation as a result of coincidental haematological malignancies. The possibility of inducing immunological self-tolerance by ASCT is particularly attractive as a means for treating juvenile idiopathic arthritis (JIA). In this disease, ASCT restores self-tolerance both through a cell-intrinsic mechanism, involving the reprogramming of autoreactive T cells, and through a cell-extrinsic mechanism, involving a renewal of the immune balance between CD4+CD25+ regulatory T cells and other T cells. This review describes the clinical results of ASCT performed for this disease and the possible underlying immunological mechanisms.  相似文献   

14.
Trypansoma cruzi affects immune responsiveness in mammalian hosts. Studies with patients and infected animals have defined some of the immunological dysfunctions but not the underlying mechanisms. Recent work using an in vitro model system of T. cruzi-human lymphocyte interactions has made it possible to uncover specific alterations in human lymphocyte activation induced by this parasite. Felipe Kierzenbaum and Marcelo Sztein discuss recent advances in our understanding of the processes that lead to impaired human lymphocyte function and that might be involved in the immunosuppression seen in the acute phase of Chagas disease.  相似文献   

15.
Melanoma is a disease which has been shown to be responsive to immune intervention. This has been suggested by reports of spontaneous responses of metastatic disease with strong immune infiltrates, and supported by recent data correlating clinical response after IFNalpha treatment with development of generalized autoimmunity. Since the identification of melanoma-associated tumor antigens, many groups have performed clinical trials to take advantage of this discovery with melanoma-specific cancer vaccines. These trials, in which multiple antigen delivery strategies have been tested in hundreds of patients, have demonstrated that these vaccines are safe, immunogenic, and yield a low frequency of objective clinical responses. The ability to perform careful immunological monitoring has allowed important insights into the nature of the anti-tumor immunity generated by these vaccinations. While many trials have found that the absolute frequency of T cells specific for a vaccine-encoded antigen are a marker of immunization, it does not correlate with objective clinical response. Induction of broad immunity to multiple tumor antigens, taking advantage of cross-reactive T cells and activation of persistent T cells may be more important. Harnessing additional modes of amplifying immune responses (lymphodepletion, cytokine support, inhibition of negative immune self-regulation) are now being tested and should improve clinical responses from 5% to 10% complete response seen currently.  相似文献   

16.
One of the most controversial issues in immunology for over a century has been whether an effective immune response can be elicited against malignant tumours. Whether the immunology community has believed cancer immunotherapy is feasible or impossible has been largely determined by the prevailing immunological paradigms at that time. In fact, during the last 110 years it is possible to trace at least five dramatic fluctuations in attitude towards cancer immunotherapy. It now appears, however, that overwhelming evidence is available to support the view that both the innate and adaptive immune responses can recognize and eliminate tumours. On the other hand, it remains to be seen if these immune responses can be harnessed to control cancer as, at the time of diagnosis, many tumours have already been immunoselected to be highly resistant to immune elimination. Based on these observations it is argued that immunotherapy approaches, other than the generation of tumour-specific cytotoxic T lymphocytes, must be explored. Alternative strategies include recruiting tumouricidal myeloid cells into tumours, generating antiangiogenic immune responses and directing innate immunity to hypoxia-induced ligands on tumour cells.  相似文献   

17.
Recent years have witnessed important breakthroughs in our understanding of tumor immunology. A variety of immunotherapeutic strategies has shown that immune manipulation can induce the regression of established cancer in humans. The identification of the genes encoding tumor-associated antigens (TAA) and the development of means for immunizing against these antigens have opened new avenues for the development of an effective anticancer immunotherapy. However, an efficient immune response against tumor requires an intricate cross-talk between cancer and immune system cells, which is still poorly understood. Only when the molecular basis underlying tumor susceptibility to an immune response is deciphered could new therapeutic strategies be designed to fit biologically defined mechanisms of cancer immune rejection. In this article, we address some of the critical issues that have been identified in cancer immunotherapy, in part from our own studies on immune therapies in melanoma patients treated with peptide-based vaccination regimens. This is not meant to be a comprehensive overview of the immunological phenomena accompanying cancer patient vaccination but rather emphasizes some emergent findings, puzzling controversies and unanswered questions that characterize this complex field of oncology. In addition to reviewing the main immunological concepts underlying peptide-based vaccination, we also review the available data regarding naturally occurring and therapeutically induced anticancer immune response, both at the peripheral and intratumoral level. The hypothesized role of innate immunity in predetermining tumor responsiveness to immunotherapeutic manipulation is also discussed.  相似文献   

18.
19.
Cell death and efficient engulfment of dying cells ensure tissue homeostasis and is involved in pathogenesis. Clearance of dying cells is a complex and dynamic process coordinated by interplay between ligands on dying cell, bridging molecules, and receptors on engulfing cells. In this review, we will discuss recent advances and significance of molecular changes on the surface of dying cells implicated in their recognition and clearance as well as factors released by dying cells that attract macrophages to the site of cell death. It is now becoming apparent that phagocytes use a specific set of mechanisms to discriminate between live and dead cells, and this phenomenon will be illustrated here. Next, we will discuss potential mechanisms by which removal of dying cells could modulate immune responses of phagocytes, in particular of macrophages. Finally, we will address possible strategies for manipulating the immunogenicity of dying cells in experimental cancer therapies.  相似文献   

20.
Gap junction-mediated intercellular communication in the immune system   总被引:4,自引:0,他引:4  
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号