首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
B. Elliott  R. S. Haltiwanger    B. Futcher 《Genetics》1996,144(3):923-933
We isolated a mutant strain unable to acquire heat shock resistance in stationary phase. Two mutations contributed to this phenotype. One mutation was at the TPS2locus, which encodes trehalose-6-phosphate phosphatase. The mutant fails to make trehalose and accumulates trehalose-6-phosphate. The other mutation was at the HSP104 locus. Gene disruptions showed that tps2 and hsp104 null mutants each produced moderate heat shock sensitivity in stationary phase cells. The two mutations were synergistic and the double mutant had little or no stationary phase-induced heat shock resistance. The same effect was seen in the tps1 (trehalose-6-phosphate synthase) hsp104 double mutant, suggesting that the extreme heat shock sensitivity was due mainly to a lack of trehalose rather than to the presence of trehalose-6-phosphate. However, accumulation of trehalose-6-phosphate did cause some phenotypes in the tps2 mutant, such as temperature sensitivity for growth. Finally, we isolated a high copy number suppressor of the temperature sensitivity of tps2, which we call PMU1, which reduced the levels of trehalose-6-phosphate in tps2 mutants. The encoded protein has a region homologous to the active site of phosphomutases.  相似文献   

2.
Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 degrees C without preconditioning but both acquired almost the same level of thermotolerance after 60 min of preconditioning. Both strains showed equal induction of trehalose-6-phosphate synthase and accumulated equal levels of trehalose during the treatment. The conditional mutant ts--187 synthesized no proteins during the preconditioning heat treatment but nevertheless acquired thermotolerance, albeit to a lesser degree than the corresponding wildtype strain. Induction of trehalose-6-phosphate synthase and accumulation of trehalose were reduced to a similar extent. These results show that acquisition of thermotolerance and accumulation of trehalose are closely correlated during heat preconditioning and are modulated by protein synthesis but do not require it.  相似文献   

3.
A D Panek  R Ferreira  A C Panek 《Biochimie》1989,71(3):313-318
Addition of glucose to derepressed yeast cells, as well as a heat shock treatment, trigger the phosphorylation of trehalase and of trehalose-6-phosphate synthase. In the present paper, evidence is provided for the requirement of the RAS protein in the transduction of the glucose signal. On the other hand, a heat shock at 52 degrees C for 2 min was able to produce a significant phosphorylating effect even in mutant strains deficient in the GTP binding protein. Moreover, it was shown that this treatment does not affect exclusively the cAMP-dependent protein kinase. The use of a series of mutant strains confirmed that low levels of cAMP favor thermotolerance; the role of trehalose in yeast viability is also discussed.  相似文献   

4.
Yeast cells show an adaptive response to a mild heat shock, resulting in thermotolerance acquisition. This is accompanied by induction of heat-shock protein (hsp) synthesis and rapid accumulation of trehalose. Genetic approaches to determine the specific role of trehalose in heat-induced thermotolerance in Saccharomyces cerevisiae have been hampered by the finding that deletion of TPS1 , the gene encoding trehalose-6-phosphate synthase, causes a variety of pleiotropic effects, including inability to grow on glucose-containing media. Here, we have studied a tps1 mutant of the yeast Schizosaccharomyces pombe that reportedly has no such growth defects. We show that tps1 mutants have a serious defect in heat shock-induced acquisition of thermotolerance if conditioned at highly elevated temperatures (40–42.5°C), which, in wild-type cells, prevent hsp but not trehalose synthesis. In contrast, hsp synthesis appears to become particularly important under conditions in which trehalose synthesis is either absent (in tps1 mutant strains) or not fully induced (conditioning at moderately elevated temperatures, i.e. 35°C). In addition, pka1 mutants deficient in cAMP-dependent protein kinase were examined. Unconditioned pka1 cells had low levels of trehalose but a high basal level of thermotolerance. It was found that pka1 mutant cells, contrary to wild-type cells, accumulated large amounts of trehalose, even during a 50°C treatment. pka1 tps1 double mutants lacked this ability and showed reduced intrinsic thermotolerance, indicating a particularly important role for trehalose synthesis, which takes place during the challenging heat shock.  相似文献   

5.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

6.
Shima S  Matsui H  Tahara S  Imai R 《The FEBS journal》2007,274(5):1192-1201
Substantial levels of trehalose accumulate in bacteria, fungi, and invertebrates, where it serves as a storage carbohydrate or as a protectant against environmental stresses. In higher plants, trehalose is detected at fairly low levels; therefore, a regulatory or signaling function has been proposed for this molecule. In many organisms, trehalose-6-phosphate phosphatase is the enzyme governing the final step of trehalose biosynthesis. Here we report that OsTPP1 and OsTPP2 are the two major trehalose-6-phosphate phosphatase genes expressed in vegetative tissues of rice. Similar to results obtained from our previous OsTPP1 study, complementation analysis of a yeast trehalose-6-phosphate phosphatase mutant and activity measurement of the recombinant protein demonstrated that OsTPP2 encodes a functional trehalose-6-phosphate phosphatase enzyme. OsTPP2 expression is transiently induced in response to chilling and other abiotic stresses. Enzymatic characterization of recombinant OsTPP1 and OsTPP2 revealed stringent substrate specificity for trehalose 6-phosphate and about 10 times lower K(m) values for trehalose 6-phosphate as compared with trehalose-6-phosphate phosphatase enzymes from microorganisms. OsTPP1 and OsTPP2 also clearly contrasted with microbial enzymes, in that they are generally unstable, almost completely losing activity when subjected to heat treatment at 50 degrees C for 4 min. These characteristics of rice trehalose-6-phosphate phosphatase enzymes are consistent with very low cellular substrate concentration and tightly regulated gene expression. These data also support a plant-specific function of trehalose biosynthesis in response to environmental stresses.  相似文献   

7.
Recent studies have shown that heat shock proteins and trehalose synthesis are important factors in the thermotolerance of the fission yeast Schizosaccharomyces pombe. We examined the effects of trehalose-6-phosphate (trehalose-6P) synthase overexpression on resistance to several stresses in cells of S. pombe transformed with a plasmid bearing the tps1 gene, which codes for trehalose-6P synthase, under the control of the strong thiamine-repressible promoter. Upon induction of trehalose-6P synthase, the elevated levels of intracellular trehalose correlated not only with increased tolerance to heat shock but also with resistance to freezing and thawing, dehydration, osmostress, and toxic levels of ethanol, indicating that trehalose may be the stress metabolite underlying the overlap in induced tolerance to these stresses. Among the isogenic strains transformed with this construct, one in which the gene coding for the trehalose-hydrolyzing enzyme, neutral trehalase, was disrupted accumulated trehalose to a greater extent and was more resistant to the above stresses. Increased trehalose concentration is thus a major determinant of the general stress protection response in S. pombe.  相似文献   

8.
Recent studies have shown that heat shock proteins and trehalose synthesis are important factors in the thermotolerance of the fission yeast Schizosaccharomyces pombe. We examined the effects of trehalose-6-phosphate (trehalose-6P) synthase overexpression on resistance to several stresses in cells of S. pombe transformed with a plasmid bearing the tps1 gene, which codes for trehalose-6P synthase, under the control of the strong thiamine-repressible promoter. Upon induction of trehalose-6P synthase, the elevated levels of intracellular trehalose correlated not only with increased tolerance to heat shock but also with resistance to freezing and thawing, dehydration, osmostress, and toxic levels of ethanol, indicating that trehalose may be the stress metabolite underlying the overlap in induced tolerance to these stresses. Among the isogenic strains transformed with this construct, one in which the gene coding for the trehalose-hydrolyzing enzyme, neutral trehalase, was disrupted accumulated trehalose to a greater extent and was more resistant to the above stresses. Increased trehalose concentration is thus a major determinant of the general stress protection response in S. pombe.  相似文献   

9.
Disruption of the HSP104 gene in a mutant which cannot accumulate trehalose during heat shock treatment caused trehalose accumulation (H. Iwahashi, K. Obuchi, S. Fujii, and Y. Komatsu, Lett. Appl. Microbiol 25:43–47, 1997). This implies that Hsp104 affects trehalose metabolism. Thus, we measured the activities of enzymes involved in trehalose metabolism. The activities of trehalose-synthesizing and -hydrolyzing enzymes are low in the HSP104 disruption mutant during heat shock. This data is correlated with intracellular trehalose and glucose levels observed in the HSP104 disruption mutant. These results suggest that during heat shock, Hsp104 contributes to the simultaneous increase in both accumulation and degradation of trehalose.  相似文献   

10.
Inhibition of huntingtin aggregation, either in the nucleus and/or in the cytosol, has been identified as a major strategy to ameliorate the symptoms of Huntington's disease. Chaperones and other protein stabilisers would thus be key players in ensuring the correct folding of the amyloidogenic protein and its expression in the soluble form. By transient activation of the global heat stress response in Saccharomyces cerevisiaeBY4742, we show that heterologous expression of mutant huntingtin (103Q-htt) could be modulated so that the protein was partitioned off in the soluble fraction of the cytosol. This led to lower levels of reactive oxygen species and improved cell viability. Previous reports had speculated on the relationship between trehalose and the heat shock response in ensuring enhanced cell survival but no direct evidence of such an interaction was available. Using mutants of an isogenic strain which do not express the major trehalose synthetic or metabolising enzymes or the chaperone, heat shock protein 104 (Hsp104), we were able to identify the functions of Hsp104 and the osmoprotectant trehalose in solubilising mutant huntingtin. We propose that the beneficial effect of the protein refolding machinery in solubilising the aggregation-prone protein is exerted by maintaining a tight balance between the trehalose synthetic enzyme, trehalose-6-phosphate synthase 1 and Hsp104. This ensures that the level of the osmoprotectant, trehalose, does not exceed the limit beyond which it is reported to inhibit protein refolding.  相似文献   

11.
Candida albicans yeast cells growing exponentially on glucose are extremely sensitive to severe heat shock treatments (52.5°C for 5 min). When these cultures were subjected to a mild temperature preincubation (42°C), they became thermotolerant and displayed higher resistance to further heat stress. The intracellular content of trehalose was very low in exponential cells, but underwent a marked increase upon non-lethal heat exposure. The accumulation of trehalose is likely due to heat-induced activation of the trehalose-6-phosphate synthase complex, whereas the external trehalase remained practically unmodified. After a temperature reversion shift (from 42°C to 28°C), the pool of trehalose was rapidly mobilized without any concomitant change in trehalase activity. These results support an important role of trehalose in the mechanism of acquired thermotolerance in C. albicans and seem to exclude the external trehalase as a key enzyme in this process.  相似文献   

12.
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.  相似文献   

13.
Temperature shifts from 23 degrees C to 36 degrees C resulted in trehalose accumulation in Saccharomyces independently of genetic lesions in the cAMP-protein kinase cascade. In parallel, trehalose 6-phosphate synthase activity increased about 3-fold in all strains; the increase could be inhibited by cycloheximide, suggesting that protein synthesis was required. Heat shock treatment after the temperature shift led to a drastic increase in trehalose activity, and deactivation of the biosynthetic enzyme with a consequent drop in trehalose. Up to now no definite correlation between acquisition of thermotolerance and trehalose accumulation has been made.  相似文献   

14.
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.  相似文献   

15.
Abstract A temperature-sensitive mutant of Saccharomyces cerevisiae has been isolated which accumulates a large pool of trehalose-6-phosphate when shifted to temperatures above 34°C nonpermissive for growth. This indicates that its defect is in the second enzyme of trehalose biosynthesis, the hydrolase that converts trehalose-6-phosphate to trehalose. Trehalose is made continouosly when yeast is growing on high glucose or when it is starved for a nitrogen source, and accumulates as cells enter the stationary phase. Revertants of the mutant able to grow at 37°C arise spontaneously and no longer accumulate trehalose-6-phosphate at this temperature. Also the kinetics of trehalose-6-phosphate accumulation in the mutant following a 25–37°C shift resemble the kinetics of inhibition of RNA and protein synthesis. It is probable therefore that accumulation of high levels of this metabolic intermediate is inhibitory to growth.  相似文献   

16.
17.
A protein of about 800 kDa with trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) activity was purified from bakers' yeast. This TPS/P complex contained 57, 86 and 93 kDa polypeptides. The 86 and 93 kDa polypeptides both appeared to be derived from a polypeptide of at least 115 kDa in the native enzyme. A TPS-activator (a dimer of 58 kDa subunits) was also purified. It decreased the Michaelis constants for both UDP-glucose (three-fold) and glucose 6-phosphate (G6P) (4.5-fold), and increased TPS activity at 5 mM-UDP-glucose/10 mM-G6P about three-fold. It did not affect TPP activity. The purification of TPS/P included an endogenous proteolytic step that increased TPS activity about three-fold and abolished its requirement for TPS-activator, but did not change TPP activity. This activation was accompanied by a decrease of some 20 kDa in the molecular mass of a cluster of SDS-PAGE bands at about 115 kDa recognized by antiserum to pure TPS/P, but by no change in the 57 kDa band. Phosphate inhibited TPS activity (Ki about 5 mM), but increased TPP activity about six-fold (Ka about 4 mM). Phosphate (6 mM) stimulated the synthesis of trehalose from G6P and UDP-glucose and decreased the accumulation of trehalose 6-phosphate.  相似文献   

18.
Endothelial nitric oxide (NO) synthase (eNOS) is regulated by heat shock protein 90 (HSP90), a heat-inducible protein; however, the effect of heat shock on eNOS expression and eNO release is unknown. Bovine aortic endothelial cells were incubated for 1 h at 37 degrees C, 42 degrees C, or 45 degrees C and cell lysates were evaluated with the use of Western blotting. We observed a 2.1 +/- 0.1-fold increase in eNOS protein content, but no change in HSP90 content, HSP70 content, or HSP90/eNOS association, 24 h after heat shock at 42 degrees C. We also observed a 7.7 +/- 1.5-fold increase in HSP70 protein content, but did not observe a change in eNOS or HSP90 24 h after heat shock at 45 degrees C. eNOS activity and maximal bradykinin-stimulated NO release was significantly increased 24 h after heat shock at 42 degrees C. Heat shock in rats (core temperature: 42 degrees C, 15 min) resulted in a significant increase in aortic eNOS, HSP90, and HSP70 protein content. The aorta from heat-shocked rats exhibited a decreased maximal contractile response to phenylephrine, which was abolished by preincubation with NG-nitro-l-arginine. We conclude that prior heat shock is a physical stimulus of increased eNOS expression and is associated with an increase in eNOS activity, agonist-stimulated NO release, and a decreased vasoconstrictor response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号