共查询到20条相似文献,搜索用时 0 毫秒
1.
Carmen A. Mannella Michael Forte Marco Colombini 《Journal of bioenergetics and biomembranes》1992,24(1):7-19
A summary is presented of the most recent information about the structure and mechanism of closure of the mitochondrial channel, VDAC. Considerable information has come from studies involving electron microscopy of two-dimensional crystals and from electrophysiological studies of wild-type channels and site-directed mutants. Available evidence points to a -barrel as the basic structural model for VDAC. Two models for voltage- or effector- induced closure have been proposed, the first involving removal of strands from the wall of the pore, the second invoking movement of protein domains into the lumen. Experimental strategies to resolve the actual mechanism are presented. 相似文献
2.
Voltage gating in the mitochondrial channel,VDAC 总被引:1,自引:0,他引:1
Marco Colombini 《The Journal of membrane biology》1989,111(2):103-111
3.
A soluble protein isolated from mitochondria has been found to modulate the voltage-dependent properties of the mitochondrial outer membrane channel, VDAC. This protein, called the VDAC modulator, was first found inNeurospora crassa and then discovered in species from other eukaryotic kingdoms. The modulator-containing fraction (at a crude protein concentration of 20 µg/ml) increases the voltage dependence of VDAC channels over 2–3-fold. At higher protein concentrations (50–100 µg/ml), some channels seem to remain in a closed state or be blocked while others display the higher voltage dependence and are able to close at low membrane potentials. By increasing the steepness of the voltage-dependent properties of VDAC channels, this modulator may serve as an amplifierin vivo to increase the sensitivity of the channels in response to changes in the cell's microenvironment, and consequently, regulate the metabolic flux across the outer mitochondrial membrane by controlling the gating of VDAC channels. 相似文献
4.
Elizabeth Blachly-Dyson Song Zhi Peng Marco Colombini Michael Forte 《Journal of bioenergetics and biomembranes》1989,21(4):471-483
The voltage-dependent anion-selective channel (VDAC) of the mitochondrial outer membrane is formed by a small ( 30 kDa) polypeptide, but shares with more complex channels the properties of voltage-dependent gating and ion selectivity. Thus, it is a useful model for studying these properties. The molecular biology techniques available in yeast allow us to construct mutant versions of the cloned yeast VDAC genein vitro, using oligonucleotide-directed mutagenesis, and to express the mutant genes in yeast cells in the absence of wild-type VDAC. We find that one substitution mutation (lys 61 to glu) alters the selectivity of VDAC. 相似文献
5.
Marco Colombini 《Journal of bioenergetics and biomembranes》1987,19(4):309-320
The channel-forming protein, VDAC, located in the mitochondrial outer membrane, is probably responsible for the high permeability of the outer membrane to small molecules. The ability to regulate this channelin vitro raises the possibility that VDAC may perform a regulatory rolein vivo. VDAC exists in multiple, quasi-degenerate conformations with different permeability properties. Therefore a modest input of energy can change VDAC's conformation. The ability to use a membrane potential to convert VDAC from a high (open) to a low (closed) conducting form indicates the presence of a sensor in the protein that allows it to respond to the electric field. Titration and modification experiments point to a polyvalent, positively charged sensor. Soluble, polyvalent anions such as dextran sulfate and Konig's polyanion seem to be able to interact with the sensor to induce channel closure. Thus there are multiple ways of applying a force on the sensor so as to induce a conformational change in VDAC. Perhaps cells use one or more of these methods. 相似文献
6.
Voltage-dependent anion-selective channels (VDACs) are pore-forming proteins allowing the permeability of the mitochondrial outer membrane. The VDAC3 isoform is the least abundant and least active in a complementation assay performed in a yeast strain devoid of porin-1. We swapped the VDAC3 N-terminal 20 amino acids with homologous sequences from the other isoforms. The substitution of the VDAC3 N-terminus with the VDAC1 N-terminus caused the chimaera to become more active than VDAC1. The VDAC2 N-terminus improved VDAC3 activity, though to a lesser extent. The VDAC3 carrying the VDAC1 N-terminus was able to complement the lack of the yeast porin in mitochondrial respiration and in modulation of reactive oxygen species (ROS). This chimaera increased life span, indicating a more efficient bioenergetic metabolism and/or a better protection from ROS. 相似文献
7.
8.
Voltage dependent anion channel (VDAC) is a vital ion channel in mitochondrial outer membranes and its structure was recently shown to be a 19 stranded β-barrel. However the orientation of VDAC in the membrane remains unclear. We probe here the topology and membrane orientation of yeast Saccharomyces cerevisiae in vivo. Five FLAG-epitopes were independently inserted into scVDAC1 and their surface exposure in intact and disrupted mitochondria detected by immunoprecipitation. Functionality was confirmed by measurements of respiration. Two epitopes suggest that VDAC (scVDAC) has its C-terminus exposed to the cytoplasm whilst two others are more equivocal and, when combined with published data, suggest a dynamic behavior. 相似文献
9.
Gonçalves RP Buzhynskyy N Prima V Sturgis JN Scheuring S 《Journal of molecular biology》2007,369(2):413-418
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane (MOM). Due to its localization, VDAC is involved in a wide range of processes, such as passage of ATP out of mitochondria, and particularly plays a central role in apoptosis. Importantly, the assembly of VDAC provides interaction with a wide range of proteins, some implying oligomerization. However, many questions remain as to the VDAC structure, its supramolecular assembly, packing density, and oligomerization in the MOM is unknown. Here we report the so far highest resolution view of VDAC and its native supramolecular assembly. We have studied yeast MOM by high-resolution atomic force microscopy (AFM) in physiological buffer and found VDAC in two distinct types of membrane domains. We found regions where VDAC was packed at high density (approximately 80%), rendering the membrane a voltage-dependent molecular sieve. In other domains, VDAC has a low surface density (approximately 20%) and the pore assembly ranges from single molecules to groups of up to 20. We assume that these groups are mobile in the lipid bilayer and allow association and dissociation with the large assemblies. VDAC has no preferred oligomeric state and no long-range order was observed in densely packed domains. High-resolution topographs show an eye-shaped VDAC with 3.8 nm x 2.7 nm pore dimensions. Based on the observed VDAC structure and the pair correlation function (PCF) analysis of the domain architectures, we propose a simple model that could explain the phase behavior of VDAC, and illustrates the sensitivity of the molecular organization to conditions in the cell, and the possibility for modulation of its assembly. The implication of VDAC in cytochrome c release from the mitochondria during cell apoptosis has made it a target in cancer research. 相似文献
10.
The voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, and thus controls cross-talk between mitochondria and the cytosol. VDAC also serves as a site for the docking of cytosolic proteins, such as hexokinase, and is recognized as a key protein in mitochondria-mediated apoptosis. The role of VDAC in apoptosis has emerged from various studies showing its involvement in cytochrome c release and apoptotic cell death as well as its interaction with proteins regulating apoptosis, including the mitochondria-bound isoforms of hexokinase (HK-I, HK-II). Recently, the functional HK-VDAC association has shifted from being considered in a predominantly metabolic light to the recognition of its major impact on the regulation of apoptotic responsiveness of the cell. Here, we demonstrate that the HK-VDAC1 interaction can be disrupted by mutating VDAC1 and by VDAC1-based peptides, consequently leading to diminished HK anti-apoptotic activity, suggesting that disruption of HK binding to VDAC1 can decrease tumor cell survival. Indeed, understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of differing functions, all important for cell life and death. By expressing VDAC1 mutants and VDAC1-based peptides, we have identified VDAC1 amino acid residues and domains important for interaction with HK and protection against apoptosis. These include negatively- and positively-charged residues, some of which are located within β-strands of the protein. The N-terminal region of VDAC1 binds HK-I and prevents HK-mediated protection against apoptosis induced by STS, while expression of a VDAC N-terminal peptide detaches HK-I-GFP from mitochondria. These findings indicate that the interaction of HK with VDAC1 involves charged residues in several β-strands and in the N-terminal domain. Displacing HK, serving as the ‘guardian of the mitochondrion’, from its binding site on VDAC1 may thus be exploited as an approach to cancer therapy. 相似文献
11.
Gincel D Silberberg SD Shoshan-Barmatz V 《Journal of bioenergetics and biomembranes》2000,32(6):571-583
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is a large channel permeable to anions, cations, ATP, and other metabolites. VDAC was purified from sheep brain synaptosomes or rat liver mitochondria using a reactive red-agarose column, in addition to the hydroxyapatitate column. The red-agarose column allowed further purification (over 98%), concentration of the protein over ten-fold, decreasing Triton X-100 concentration, and/or replacing Triton X-100 with other detergents, such as Nonidet P-40 or octylglucoside. This purified VDAC reconstituted into planar-lipid bilayer, had a unitary maximal conductance of 3.7 ± 0.1 nS in 1 M NaCl, at 10 mV and was permeable to both large cations and anions. In the maximal conducting state, the permeability ratios for Na+, acetylcholine+, dopamine,+ and glutamate–, relative to Cl–, were estimated to be 0.73, 0.6, 0.44, and 0.4, respectively. In contrast, in the subconducting state, glutamate– was impermeable, while the relative permeability to acetylcholine+ increased and to dopamine+ remained unchanged. At the high concentrations (0.1–0.5 M) used in the permeability experiments, glutamate eliminated the bell shape of the voltage dependence of VDAC channel conductance. Glutamate at concentrations of 1 to 20 mM, in the presence of 1 M NaCl, was found to modulate the VDAC channel activity. In single-channel experiments, at low voltages (±10 mV), glutamate induced rapid fluctuations of the channel between the fully open state and long-lived low-conducting states or short-lived closed state. Glutamate modification of the channel activity, at low voltages, is dependent on voltage, requiring short-time (20–60 sec) exposure of the channel to high membrane potentials. The effect of glutamate is specific, since it was observed in the presence of 1 M NaCl and it was not obtained with aspartate or GABA. These results suggest that VDAC possesses a specific glutamate-binding site that modulates its activity. 相似文献
12.
Kunji ER 《FEBS letters》2004,578(3):239-244
We have identified a novel CARD-containing protein from EST database. BinCARD (Bcl10-interacting protein with CARD). BinCARD was ubiquitously expressed. Co-immunoprecipitation, In vitro binding, mammalian two-hybrid, and immunostaining assays revealed that BinCARD interacted with Bcl10 through CARD. BinCARD potently suppressed NF-kappa B activation induced by Bcl10 and decreased the amounts of phosphorylated Bcl10. Mutations at the residue Leu17 or Leu65, which is highly conserved in CARD, abolished the inhibitory effects of BinCARD on both Bcl10-induced activation of NF-kappa B and phosphorylation of Bcl10. Further, expression of BinCARD inhibited Bcl10 phosphorylation induced by T cell activation signal. These results suggest that BinCARD interacts with Bcl10 to inhibit Bcl10-mediated activation of NF-kappa B and to suppress Bcl10 phosphorylation. 相似文献
13.
Lee S Augustin S Tatsuta T Gerdes F Langer T Tsai FT 《The Journal of biological chemistry》2011,286(6):4404-4411
FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases. 相似文献
14.
Richard A. Nakashima 《Journal of bioenergetics and biomembranes》1989,21(4):461-470
The outer mitochondrial membrane receptor for hexokinase binding has been identified as the VDAC protein, also known as mitochondrial porin. The ability of the receptor to bind hexokinase is inhibited by pretreatment with dicyclohexylcarbodiimide (DCCD). At low concentrations, DCCD inhibits hexokinase binding by covalently labeling the VDAC protein, with no apparent effect on VDAC channel-forming activity. The stoichiometry of [14C]-DCCD labeling is consistent with one to two high-affinity DCCD-binding sites per VDAC monomer. A comparison between the sequence of yeast VDAC and a conserved sequence found at DCCD-binding sites of several membrane proteins showed two sites where the yeast VDAC amino acid sequence appears to be very similar to the conserved DCCD-binding sequence. Both of these sites are located near the C-terminal end of yeast VDAC (residues 257–265 and 275–283). These results are consistent with a model in which the C-terminal end of VDAC is involved in binding to the N-terminal end of hexokinase. 相似文献
15.
“The large scale remodeling of mitochondria during apoptosis is a necessary step for the complete release of cytochrome c” has been a tenet since 2002. However, more recent findings strongly indicate that the large-scale remodeling previously described actually takes place after the release of cytochrome c and in a caspase-dependent manner, bringing into question whether mitochondria remodeling is necessary. In a more recent article, however, it was shown that a much more subtle form of remodeling is taking place which is only observable by electron tomography. In the Bcl-2 inhibitable Bax/Bak-dependent intrinsic pathway of apoptosis, the release of cytochrome c from mitochondria is a consequence of two carefully coordinated events: formation of outer membrane pores and opening of crista junctions triggered by Opa1 oligomer disassembly, and both steps are necessary for the complete release of cytochrome c. We review the recent literature pertaining to the coordinated release of cytochrome c during cell death. 相似文献
16.
17.
Goulet A Lai-Kee-Him J Veesler D Auzat I Robin G Shepherd DA Ashcroft AE Richard E Lichière J Tavares P Cambillau C Bron P 《The Journal of biological chemistry》2011,286(28):25397-25405
The SPP1 siphophage uses its long non-contractile tail and tail tip to recognize and infect the Gram-positive bacterium Bacillus subtilis. The tail-end cap and its attached tip are the critical components for host recognition and opening of the tail tube for genome exit. In the present work, we determined the cryo-electron microscopic (cryo-EM) structure of a complex formed by the cap protein gp19.1 (Dit) and the N terminus of the downstream protein of gp19.1 in the SPP1 genome, gp21(1-552) (Tal). This complex assembles two back-to-back stacked gp19.1 ring hexamers, interacting loosely, and two gp21(1-552) trimers interacting with gp19.1 at both ends of the stack. Remarkably, one gp21(1-552) trimer displays a "closed" conformation, whereas the second is "open" delineating a central channel. The two conformational states dock nicely into the EM map of the SPP1 cap domain, respectively, before and after DNA release. Moreover, the open/closed conformations of gp19.1-gp21(1-552) are consistent with the structures of the corresponding proteins in the siphophage p2 baseplate, where the Tal protein (ORF16) attached to the ring of Dit (ORF15) was also found to adopt these two conformations. Therefore, the present contribution allowed us to revisit the SPP1 tail distal-end architectural organization. Considering the sequence conservation among Dit and the N-terminal region of Tal-like proteins in Gram-positive-infecting Siphoviridae, it also reveals the Tal opening mechanism as a hallmark of siphophages probably involved in the generation of the firing signal initiating the cascade of events that lead to phage DNA release in vivo. 相似文献
18.
Rowena Angeles Janet Devine Ron Barret Dennis Goebel Elizabeth Blachyl-Dyson Michael Forte Roy McCauley 《Journal of bioenergetics and biomembranes》1999,31(2):143-151
Point mutations at K234 and K236 in the yeast voltage-dependent anionchannel 1 (VDAC1) of the mitochondrial outer membrane have been shown tomarkedly impair the membrane insertion of this protein (Smith etal., 1995; Angeles et al., 1998). Mutants of this type wereexpressed in vivo in a strain of yeast with a disruption in theVDAC1 gene. Expression of the various VDAC1 forms was under the control of aGal1 promoter. Wild-type VDAC1 expression fully complemented the slow growthphenotype caused by the disruption. VDAC1 mutants in which K234 and K236 werereplaced by arginine, glutamate, or glutamine caused a more severe negativeeffect on growth. This effect appeared to be dominant since the mutant VDAC1forms suppressed growth in a yeast strain that retained its VDAC1 gene. Thisapparent dominant negative effect on growth did not seem to be specific forany stage of the cell cycle. However, the growth defect was not lethal as theaffected cells still could accumulate the vital stain, FUN1. Expression of amutant in which K234 had been replaced by glutamate had more serious negativegrowth effects than did a similar mutation at K236. Expression of71-116 VDAC1 complemented the VDAC1 disruption; however, expression ofthe same deletion mutant in which the lysines corresponding to K234 and K236were mutated to glutamate severely impaired growth. These results have shownthat a deficiency of lysine at positions 234 and 236 in VDAC1 causes anonlethal growth defect that is more severe than deletion of 45 amino acidsfrom VDAC1 or disruption of the VDAC1 gene. They also indicate that there is ahierarchy in the importance of these lysines with mutations at K234 being themore serious. 相似文献
19.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1−/− mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1−/− mice exhibit impaired glucose tolerance whereas vdac3−/− mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1−/−/vdac3−/−) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance. 相似文献
20.
Svensson G Awad W Håkansson M Mani K Logan DT 《The Journal of biological chemistry》2012,287(17):14040-14051
Glypicans are a family of cell-surface proteoglycans that regulate Wnt, hedgehog, bone morphogenetic protein, and fibroblast growth factor signaling. Loss-of-function mutations in glypican core proteins and in glycosaminoglycan-synthesizing enzymes have revealed that glypican core proteins and their glycosaminoglycan chains are important in shaping animal development. Glypican core proteins consist of a stable α-helical domain containing 14 conserved Cys residues followed by a glycosaminoglycan attachment domain that becomes exclusively substituted with heparan sulfate (HS) and presumably adopts a random coil conformation. Removal of the α-helical domain results in almost exclusive addition of the glycosaminoglycan chondroitin sulfate, suggesting that factors in the α-helical domain promote assembly of HS. Glypican-1 is involved in brain development and is one of six members of the vertebrate family of glypicans. We expressed and crystallized N-glycosylated human glypican-1 lacking HS and N-glycosylated glypican-1 lacking the HS attachment domain. The crystal structure of glypican-1 was solved using crystals of selenomethionine-labeled glypican-1 core protein lacking the HS domain. No additional electron density was observed for crystals of glypican-1 containing the HS attachment domain, and CD spectra of the two protein species were highly similar. The crystal structure of N-glycosylated human glypican-1 core protein at 2.5 Å, the first crystal structure of a vertebrate glypican, reveals the complete disulfide bond arrangement of the conserved Cys residues, and it also extends the structural knowledge of glypicans for one α-helix and two long loops. Importantly, the loops are evolutionarily conserved in vertebrate glypican-1, and one of them is involved in glycosaminoglycan class determination. 相似文献