首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

2.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

3.
《Reproductive biology》2022,22(4):100705
Type I collagen is the most abundant extracellular matrix (ECM) protein in the mammalian ovary, and comprises two COL1A1 subunits and one COL1A2 subunit. Matrix metalloproteinase 1 (MMP1) is a typical collagenase of type I collagen, that can be detected in ovarian follicles and early corpus luteum. Previous studies demonstrated that MMP1-mediated degradation of type I collagen plays a functional role in regulating corpus luteum formation, and transforming growth factor β1 (TGF-β1) inhibits luteinization and progesterone production in granulosa cells (GCs). Whether TGF-β1 regulates the expression of MMP1, COL1A1, or the deposition of type I collagen during corpus luteum formation remains to be elucidated. This study aimed to investigate the molecular mechanisms through which TGF-β1 regulates MMP1 expression and type I collagen deposition in GCs. Our results show that TGF-β1 upregulates COL1A1 expressions and downregulates MMP1 expression. Inhibition approaches, including pharmacological inhibitors such as p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), AKT inhibitor (LY294002), and GSK-3β inhibitor (LiCl), as well as knockdown using siRNA specific to these genes, were used. Our results suggest that TGF-β1 decreases MMP1 production via an ALK5-mediated AKT/GSK-3β-dependent signaling pathway, and a decrease in MMP1 levels and an increase in COL1A1 levels synergistically promote type I collagen deposition in GCs. Collectively, these findings provide novel insights into the underlying molecular mechanisms by which TGF-β1 upregulates type I collagen deposition in GCs.  相似文献   

4.
Epilysin (MMP-28) is a conserved member of the matrix metalloproteinase (MMP) family. It is expressed in various normal tissues, and induced in wounds and in developing and regenerating nerves. Epilysin induces TGF-β mediated epithelial to mesenchymal transition, but its other functions are largely unknown. We have characterized the localization of both catalytically active and mutated inactive, overexpressed epilysin in established epithelial cell lines. We found that epilysin was localized abundantly to the basolateral side of the cells and associated with the extracellular matrix (ECM) as verified by immunoblotting and confocal microscopy. Overexpression of epilysin in MDCK cells resulted in a drastic reduction of basolateral ECM, as observed by the disappearance of collagen type IV, laminin and fibronectin. Cultivation of epilysin expressing MDCK cells in defined serum free medium resulted in the restoration of these proteins to the ECM. The levels of fibronectin and collagen IV were, however, reduced in epilysin expressing cells under the serum free conditions, and degradation fragments of collagen IV were detected supporting the activation of proteolysis by epilysin. Epilysin was observed in its unprocessed 50 kDa active form in the ECM of MDCK cells under serum free conditions whereas in cells cultured in serum containing it was processed to the 48 kDa form. Current results indicate that epilysin associates with the basolateral ECM of cultured epithelial cells, where it plausibly plays a role in the regulation of matrix composition and turnover.  相似文献   

5.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

6.
The purpose of this study is to differentiate roles of several growth factors and cytokines in proliferation and differentiation of pulp cells during development and repair. In human pulp cell cultures, laminin and type I collagen levels per cell remained almost constant during the whole culture period (22 days). On the other hand, secreted protein, acidic and rich in cysteine (SPARC/osteonectin) and alkaline phosphatase (ALPase) levels markedly increased after the cultures reached confluence. Laminin and type I collagen, as well as fibronectin, stimulated the spreading of pulp cells within 1 h. Adding transforming growth factor-β (TGF-β) decreased laminin and ALPase levels, whereas it increased SPARC and fibronectin levels 3- to 10-fold. Western and Northern blots showed that TGF-β enhanced SPARC synthesis at the protein and mRNA levels. Basic fibroblast growth factor (bFGF) decreased type I collagen, laminin, SPARC, and ALPase levels without changing the fibronectin level. Platelet-derived growth factor (PDGF) selectively decreased laminin, SPARC, and ALPase levels. Epidermal growth factor (EGF) also decreased SPARC and ALPase levels. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) decreased type I collagen and laminin levels, and abolished SPARC and ALPase syntheses. Of these peptides, bFGF and PDGF showed the greatest stimulation of [3H]thymidine incorporation into DNA. TGF-β, EGF, and TNF-α had less effect on DNA synthesis, whereas IL-1β inhibited DNA synthesis. These findings demonstrated that TGF-β, bFGF, EGF, PDGF, TNF-α, and IL-1β have characteristically different patterns of actions on DNA, laminin, type I collagen, fibronectin, ALPase, and SPARC syntheses by pulp cells. J. Cell. Physiol. 174:194–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

9.
Transforming growth factor-β (TGF-β) is known to promote the accumulation of extracellular matrix (ECM) and the development of diabetic nephropathy. Halofuginone, an analog of febrifugine, has been shown to block TGF-β1 signaling and subsequent type I collagen production. Here, the inhibitory effect of halofuginone on diabetic nephropathy was examined. Halofuginone suppressed Smad2 phosphorylation induced by TGF-β1 in cultured mesangial cells. In addition, the expression of TGF-β type 2 receptor decreased by halofuginone. Halofuginone showed an inhibitory effect on type I collagen and fibronectin expression promoted by TGF-β1. An in vivo experiment using db/db mice confirmed the ability of halofuginone to suppress mesangial expansion and fibronectin overexpression in the kidneys. Moreover, an analysis of urinary 8-OHdG level and dihydroethidium fluorescence revealed that halofuginone reduced oxidative stress in the glomerulus of db/db mice. These data indicate that halofuginone prevents ECM deposition and decreases oxidative stress, thereby suppressing the progression of diabetic nephropathy.  相似文献   

10.
Idiopathic pulmonary fibrosis is characterized by myofibroblast accumulation, extracellular matrix (ECM) remodeling, and excessive collagen deposition. ECM-producing myofibroblasts may originate from epithelial cells through epithelial to mesenchymal transition (EMT). TGF-β1 is an inducer of EMT in pulmonary epithelial cells in vitro and in vivo, though the mechanisms are unclear. We hypothesized that TGF-β1 induced EMT through Smad-dependent and -independent processes. To test this hypothesis, we studied the roles and mechanisms of TGF-β1-induced Smad and p38 mitogen-activated protein kinase (MAPK) signaling in EMT-related changes in pulmonary epithelial cells. Exposure of pulmonary epithelial 1HAEo(-) cells to TGF-β1 resulted in morphological and molecular changes of EMT over a 96-h period; loss of cell-cell contact, cell elongation, down-regulation of E-cadherin, up-regulation of fibronectin, and up-regulation of collagen I. Both Smad2/3 and p38 MAPK signaling pathways were activated by TGF-β1. However, neither Smad2/3 nor p38 MAPK were required for the down-regulation of E-cadherin, yet p38 MAPK was associated with fibronectin up-regulation. Both Smad2/3 and p38 MAPK had a role in regulation of TGF-β1-induced collagen expression. Furthermore, these data demonstrate that Smads and p38 MAPK differentially regulate EMT-related changes in pulmonary epithelial cells.  相似文献   

11.
The profound effects of transforming growth factor β1 (TGF-β1) on the immune system, cardiogenesis, in yolk sac hematopoeisis and in differentiation of endothelium have been demonstrated by detailed analyses of TGF-β1 knockout mice during embryogenesis. We have systematically examined the autocrine and paracrine roles of TGF-β1 in cell proliferation and in its ability to modulate the gene expression of selected components of extracellular matrix (ECM) using embryonic fibroblasts from TGF-β1 null mice (TGF-β1−/−). The rates of cell proliferation of embryonic fibroblasts from normal mice (TGF-β1+/+) and TGF-β1 null mice were compared by cell counting, by 3H thymidine incorporation, and by measuring the fraction of cells in the G1, S, and G2/M phases of the cell cycle by fluorescent activated cell sorting (FACS). Concurrently, the expression of pro-α1(I) collagen, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) was also quantified by hybridization of total mRNA from TGF-β1+/+ and TGF-β1−/− embryonic fibroblasts. We report that TGF-β1−/− cells proliferated at about twice the rate of TGF-β1+/+ cells. Further, TGF-β1 null fibroblasts accumulated and synthesized lower constitutive levels of pro-α1(I) collagen, fibronectin, and PAI-1 mRNA. The quantitative differences in the rates of cell proliferation and ECM gene expression between TGF-β1+/+ and TGF-β1−/− cells could be eliminated by treatment of TGF-β1+/+ cells with a neutralizing antibody of TGF-β1. Thus, our results are consistent with the hypothesis that TGF-β1 acts as a negative autocrine regulator of growth and a positive autocrine regulator of ECM biosynthesis in embryonic fibroblasts. 176:67–75, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    12.
    The contribution of hyaluronan-dependent pericellular matrix to TGF-β1-driven induction and maintenance of myofibroblasts is not understood. Hyaluronan is an extracellular matrix (ECM) glycosaminoglycan important in cell adhesion, proliferation and migration, and is implicated in myofibroblast formation and maintenance. Reduced turnover of hyaluronan has been linked to differentiation of myofibroblasts and potentiation of lung fibrosis. Fibronectin is a fibril forming adhesive glycoprotein that is also upregulated following induction with TGF-β1. Although they are known to bind each other, the interplay between hyaluronan and fibronectin in the pericellular matrix during myofibroblast induction and matrix assembly is not clear. This study addresses the role of hyaluronan and its interaction with fibrillar matrix components during myofibroblast formation. Hyaluronan and fibronectin were increased and co-localized in the ECM following myofibroblast induction by TGF-β1. Inhibition of hyaluronan synthesis in TGF-β1-induced lung myofibroblasts over a 4 day period with 4-methyl umbelliferone (4-MU) further enhanced myofibroblast morphology, caused increased deposition of fibronectin and type I collagen in the ECM, and increased expression of alpha-smooth muscle actin and hyaluronan synthase 2 (HAS2) mRNA. Hyaluronan oligosaccharides or hyaluronidase treatment, which more effectively disrupted the pericellular matrix, had similar effects. CD44 and β1 integrins co-localized in the cell membrane and along some stress fibers. However, CD44 and hyaluronan were specifically excluded from focal adhesions, and associated primarily with cortical actin. Time-lapse imaging of the immediate effects of hyaluronidase digestion showed that hyaluronan matrix primarily mediates attachment of membrane and cortical actin between focal contacts, suggesting that surface adhesion through hyaluronan and CD44 is distinct from focal adhesion through β1 integrins and fibronectin. Fluorescein-labeled hyaluronan bound regularly along fibronectin fibers and co-localized more with β1 integrin and less with CD44. Therefore, the hyaluronan matrix can interfere with the assembly of fibrillar ECM components, and this interplay regulates the degree of myofibroblast formation. These data also suggest that adhesion through hyaluronan matrix impacts cytoskeletal organization, and is potentially part of a clutch mechanism that regulates stick and slip of myofibroblasts by affecting the adhesion to and organization of fibronectin and collagen.  相似文献   

    13.
    To investigate the effects of the transient receptor potential vanilloid type 1 (TRPV1) channel on renal extracellular matrix (ECM) protein expression including collagen deposition and the transforming growth factor β (TGF-β)/Smad signaling pathway during salt-dependent hypertension, wild-type (WT) and TRPV1-null (TRPV1?/?) mutant mice were uninephrectomized and given deoxycorticosterone acetate (DOCA)-salt for 4 wks. TRPV1 gene ablation exaggerated DOCA-salt-induced impairment of renal function as evidenced by increased albumin excretion (μg/24 h) compared with WT mice (83.7 ± 7.1 versus 28.3 ± 4.8, P < 0.05), but had no apparent effect on mean arterial pressure (mmHg) as determined by radiotelemetry (141 ± 4 versus 138 ± 3, P > 0.05). Morphological analysis showed that DOCA-salt-induced glomerulosclerosis, tubular injury and macrophage infiltration (cells/mm2) were increased in TRPV1?/? compared with WT mice (0.74 ± 0.08 versus 0.34 ± 0.04; 3.14 ± 0.26 versus 2.00 ± 0.31; 68 ± 5 versus 40 ± 4, P < 0.05). Immunostaining studies showed that DOCA-salt treatment decreased nephrin but increased collagen type I and IV as well as phosphorylated Smad2/3 staining in kidneys of TRPV1?/? compared with WT mice. Hydroxyproline assay and Western blot showed that DOCA-salt treatment increased collagen content (μg/mg dry tissue) and fibronectin protein expression (%β-actin arbitrary units) in the kidney of TRPV1?/? compared with WT mice (26.7 ± 2.7 versus 17.4 ± 1.8; 0.93 ± 0.07 versus 0.65 ± 0.08, P < 0.05). Acceleration of renal ECM protein deposition in DOCA-salt-treated TRPV1?/? mice was accompanied by increased TGF-β1, as well as phosphorylation of Smad2/3 protein expression (%β-actin arbitrary units) compared with DOCA-salt-treated WT mice (0.61 ± 0.07 versus 0.32 ± 0.05; 0.57 ± 0.07 versus 0.25 ± 0.05; 0.71 ± 0.08 versus 0.40 ± 0.06, P < 0.05). These results show that exaggerated renal functional and structural injuries are accompanied by increased production of ECM protein and activation of the TGF-β/Smad2/3 signaling pathway. These data suggest that activation of TRPV1 attenuates the progression of renal fibrosis possibly via suppression of the TGF-β and its downstream regulatory signaling pathway.  相似文献   

    14.
    Follicle development is a complex process under strict regulation of diverse hormones and cytokines including transforming growth factor β (TGF-β) superfamily members. TGF-β is pivotal for the regulation of ovarian functions under physiological and pathological conditions. In this study, effect of TGF-β1 on chicken follicle development was examined through investigating the accumulation and action of collagen, an indispensable member of the extracellular matrix (ECM) involved in this process. The granulosa cells (GCs) and theca cells (TCs) were separated from growing follicles of the laying chicken for treatment of TGF-β1 and analysis of expression of ECM components and key proteins in intracellular signaling pathways. Results showed that collagen was mainly distributed in the follicular theca layer and was produced with the formation of the granulosa layer during ovarian development. Collagen accumulation increased with follicle growth and treatment of GCs with TGF-β1 elicited an increased expression of collagen. After production from GCs, collagen was transferred to the neighboring TCs to promote cell proliferation and inhibit apoptosis. Treatment of collagen remarkably increased expression of p-ERK, mitogen-activated protein kinase (MAPK), and p-MAPK, but treatment with hydroxylase inhibitor (to break collagen structure) reversed these alterations. In conclusion, during follicle growth collagen was secreted by GCs under TGF-β1 stimulation and was subsequently collaboratively transferred to neighboring TCs to increase cell proliferation and thus to promote follicle development via an intercellular cooperative pattern during development of chicken growing follicles.  相似文献   

    15.
    Regulation of extracellular matrix (ECM) components is essential for tissue homeostasis and function. We screened a small peptide that induces ECM protein synthesis for its usefulness in protecting keratinocytes. In this report, we demonstrate that myristoyl tetrapeptide Ala‐Ala‐Pro‐Val (mAAPV) stimulates the expression of ECM proteins and inhibits the expression of metalloproteinases (MMPs) that degrade ECM proteins in Hs68 human fibroblast cells. In order to elucidate the underlying molecular mechanisms for the effects of mAAVP, we investigated the changes in gene expression in the presence of mAAPV using a cDNA microarray. Treatment with mAAPV resulted in decreased expression of MMP‐related genes such as MMP1, MMP3, TIMP1 and TIMP3 and increased expression of collagen genes, including COL1A1, COL1A2, COL3A1, COL5A1 and COL6A3. The pattern of gene expression regulated by mAAPV was very similar to that of gene expression induced by transforming growth factor (TGF)‐β, indicating that the TGF‐β signaling pathway is crucial for simultaneous activation of several ECM‐related genes by mAAPV. We examined whether the activation of SMAD, a downstream protein of TGF‐β receptor, is involved in the signal transduction pathway induced by mAAPV. The results demonstrate that mAAVP directly activates SMAD2 and induces SMAD3 to bind to DNA. In conclusion, our results demonstrate that mAAPV both enhances the expression of collagen and inhibits its degradation via production of protease inhibitors that prevent enzymatic breakdown of the ECM. The results suggest that mAAPV would be a useful ECM‐protecting agent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

    16.
    The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

    17.
    We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

    18.
    Hyperglycemia and hypoxia have independent and convergent roles in the development of renal disease. Transforming growth factor-β(1) (TGF-β(1)) is a key cytokine promoting the production of extracellular matrix proteins. The cationic-independent mannose 6-phosphate receptor (CI-M6PR) is a membrane protein that binds M6P-containing proteins. A key role is to activate latent TGF-β(1). PXS25, a novel CI-MPR inhibitor, has antifibrotic properties in skin fibroblasts, but its role in renal fibrosis is unclear. The aim was to study the role of PXS25 in matrix protein production under high glucose ± hypoxic conditions in human proximal tubule (HK-2) cells. HK-2 cells were exposed to high glucose (30 mM) ± 100 μM PXS25 in both normoxic (20% O(2)) and hypoxic (1% O(2)) conditions for 72 h. Cellular fibronectin, collagen IV, and matrix metalloproteinase-2 (MMP-2) and MMP-9 were assessed. Total and active TGF-β(1) were measured by ELISA. High glucose and hypoxia independently induced TGF-β(1) production. Active TGF-β(1), but not total TGF-β(1) was reduced with concurrent PXS25 in the presence of high glucose, but not in hyperglycemia+hypoxia conditions. Hyperglycemia induced fibronectin and collagen IV production (P < 0.05), as did hypoxia, but only hyperglycemia-induced increases in matrix proteins were suppressed by concurrent PXS25 exposure. High glucose induced MMP-2 and -9 in normoxic and hypoxic conditions, which was not modified in the presence of PXS25. High glucose and hypoxia can independently induce endogenous active TGF-β(1) production in human proximal tubular cells. PXS25 inhibits conversion of high glucose-induced release of active TGF-β(1), only in the absence of hypoxia.  相似文献   

    19.
    Circular RNAs (circRNAs) are a novel type of noncoding RNAs that modulate the pathogenesis of multiple diseases. Nevertheless, the role of circRNAs in diabetic nephropathy (DN) pathogenesis is still ambiguous. In the current study, our team aims to investigate the expression profiles of circRNAs in DN and identify the function of circRNA on mesangial cells. CircRNAs microarray analysis revealed dysregulated circRNA in db/db DN mice, and circRNA_15698 was validated to be upregulated in both db/db mice and mouse mesangial cells (SV40-MES13) that were exposed to high glucose (25 mM) using real-time polymerase chain reaction. Loss-of-functional experiments showed that circRNA_15698 knockdown significantly inhibited the expression levels of collagen type I (Col. I), collagen type IV (Col. IV), and fibronectin. Moreover, the cellular localization of circRNA_15698 was mainly in the cytoplasm. Bioinformatics tools and luciferase reporter assay confirmed that circRNA_15698 acted as a ‘sponge’ of miR-185, and then positively regulated the transforming growth factor-β1 (TGF-β1) protein expression, suggesting a circRNA_15698/miR-185/TGF-β1 pathway. Further validation experiments validated that circRNA_15698/miR-185/TGF-β1 promoted extracellular matrix (ECM)-related protein synthesis. In summary, our study preliminarily investigates the role of circRNAs in mesangial cells and ECM accumulation, providing a novel insight for DN pathogenesis.  相似文献   

    20.
    The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号