首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Of the seven species of Halimeda inhabiting a lagoon on Moorea island, three representing 10% of the algal covering and averaging 111 g of dry weight m-2, have been studied in the course of a year. The biomass, measured bimonthly, stresses a slight seasonal variability in the species life. The main decrease was reported for H. opuntia after a fruiting event, which happened in October. The primary production was assessed, in situ, periodically over a year, by measuring oxygen variations in enclosures. Either expressed on specific-weight basis or in area units, the highest primary productions were recorded for H. opuntia. Productions and biomasses vary simultaneously during the year. The three species produce all together about 6 g C m-2y-1. The growth rate of the sand-dwelling H. incrassata f. ovata was followed during the year by staining, in the field, individuals with alizarin Red-S. The average rates measured were 3.3 segments ind-1d-1 and 0.17 gdw d-1m-2. The contribution of the three species to the carbonate budget of the reef was estimated by total alkalinity measurements during 24-h cycles. H. opuntia had the highest CaCO3 production. For the three species studied, CaCO3 production of 1.4 kg m-2y-1, which could correspond to a 0.4mm/year accretion of the studied reefal system, was estimated.  相似文献   

2.
The average biomass ofHalimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m?2 total biomass (?90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species ofHalimeda but was dominated by only two species,H. copiosa andH. opuntia, except on the atoll whereH. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d?1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m?2 d?1 are considerably higher than previously reported values forHalimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m?2 year?1 ofHalimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year?1 due toHalimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.  相似文献   

3.
The calcified green algal genus Halimeda is one of the most ecologically important but morphologically diverse seaweeds in sub-tropical and tropical waters. Because of its high morphological plasticity, the identification of Halimeda species based on morphological characters is challenging without the assistance of molecular analysis. To date, the species diversity of Halimeda in Taiwan and its overseas territories has not been investigated with the assistance of DNA sequencing, and this taxonomic knowledge gap should be filled. The present study initiates a systematic examination of the species diversity and distribution of Halimeda in Taiwan, Spratly Island, and Dongsha Atoll in the South China Sea, using DNA sequence data (plastid tufA gene and rbcL) and morphological data. Our DNA analyses revealed the presence of 10 Halimeda species (Halimeda borneensis, Halimeda cylindracea, Halimeda discoidea, Halimeda distorta, Halimeda macroloba, Halimeda minima, Halimeda opuntia, Halimeda renschii, Halimeda taiwanensis sp. nov., and Halimeda velasquezii) in the waters around Taiwan, Spratly Island, and Dongsha Atoll. The majority of the species could be readily distinguished by their morphological and anatomical characters. The proposed new species, H. taiwanensis, was differentiated not only by our algorithmic species delimitation analyses (statistical parsimony network analysis and automated barcode gap discovery), but also by its morphological features. The proposed new species differs from two externally resembled species, H. cuneata and H. discoidea, in having an undulated segment margin, the complete fusion of medullary siphons at the node, the lack of segment stalk, and the presence of a large primary utricle. Here, we present the up-to-date taxonomic account, molecular diversity, and geographical distribution of Halimeda spp. in Taiwan and associated areas of the South China Sea. Environmental factors that might drive the occurrence and latitudinal distribution of the species are also discussed.  相似文献   

4.
Halimeda is a potential carbon sink species and an important player in the global carbonate budget. The objectives of this study were to: (i) examine the CaCO3 and sediment productions of H. macroloba by measuring the density, growth rate, and recruitment; (ii) quantify the numbers of aragonite crystals; (iii) document reproductive events; and (iv) determine the life‐span. This study was carried out at Lidee Lek Island, Satun, Thailand during July 2015 to April 2016. The density was measured using quadrats (0.25 m2) and three 50 m line transects. Alizarin Red‐S marking technique was used for the growth rate and CaCO3 accumulation rate assessments. The recruitment, reproduction and life‐span were measured by tagging 500 individuals. Tagged individuals and new plants were counted. In this study, mean and the highest density of Halimeda were 44.42 ± 13.95 and 138.22 ± 11.68 thalli m?2, respectively, and Halimeda produced 1–2 new segments.thallus?1 day?1 or 0.021 ± 0.001 g dry weight.thallus?1.day?1. The annual biomass production was 1910–5950 g m?2 year.?1. There was a low rate of occurrence of sexual reproduction, observed in late July to September, ranging from 0.17% to 1.92%. For the mortality and recruitment rates, approximately 70–80% of individuals were lost during July to September 2015, probably from sexual reproduction and the recruitment rate varied from 5.36 ± 0.79% to 21.03 ± 2.33%. The highest density of new recruits was found in September 2015 right after the sexual reproductive event occurred. New recruits have been found up to April 2016 without any reproductive events, suggesting that both sexual and asexual reproduction helped maintain the population. The life span of Halimeda was 8–12 months. In addition, Halimeda accumulated CaCO3 at approximately 0.018 g CaCO3 thallus?1 day?1 and produced CaCO3 at approximately 291.94–908.11 g m?2 year?1, indicating that Halimeda contributes to CaCO3 and helps to sink carbon through calcification. The results in terms of the density, growth rate, and CaCO3 accumulation rate can be used to calculate the mass of carbonate sediment contributed by Halimeda.  相似文献   

5.
The tropical green algal genus Halimeda is one of the best studied examples of pseudo-cryptic diversity within the algae. Previous molecular and morphometric studies revealed that within Halimeda section Rhipsalis, Halimeda incrassata included three pseudo-cryptic entities and that the morphological boundaries between H. incrassata and Halimeda melanesica were ill-defined. In this paper, the taxonomy of H. incrassata is revised: two pseudo-cryptic entities are described as new species, Halimeda kanaloana and Halimed heteromorpha, while H. incrassata is redefined to encompass a single, monophyletic entity. Similarities and differences between the three species and H. melanesica are discussed. Monophyly of H. heteromorpha, which was questioned in a former study, is reinvestigated using sets of 32 ITS1–ITS2 and 21 plastid rps3 sequences and various alignment and inference methods. The phylogenetic relationships within Halimeda section Rhipsalis are inferred from nuclear 18S–ITS1–5.8S–ITS2 and concatenated plastid sequences (tufA & rpl5–rps8–infA) and interpreted in a biogeographic context.  相似文献   

6.
Over a dozen species of the genus Halimeda have been chemically investigated and found to produce the diterpenoid metabolites halimedatrial (1) and halimedatetraacetate (2) in varying concentrations. These meabolites have been proposed to play a role in chemical defense against herbivores based on their chemical structures and their demonstrated biological activities in laboratory and aquarium assays. We examined and compared the feeding deterrent effects of these two compounds tovard herbivorous fishes in field experiments on Guam reefs. Halimedatrial is a more effective feeding deterrent than halimedatetraacetate. It is the major secondary metabolite in young Halimeda macroloba and in the newly produced segments of growing plants. The organic extracts from young plants and new segments were significantly more deterrent than extracts from mature plant tissue. Some populations of Halimeda growing in reef-slope habitats, where herbivory is intense, also have high concentrations of halimedatrial. We compared extracts between reef slope and reef flat collections of Halimeda opuntia on Guam and Pohnpei (= Ponape), and H. discoidea and H. macroloba on Guam. We found that halimedtrial was the major metabolite in reef-slope collections of H. opuntia from Pohnpei and Pago Bay, Guam, and that halimedatetraacetate was the major metabolite a non-reef slope populations. In the cases examined, chemical defenses were greatest in (1) plant parts and (2) populations that were at greatest risk to herbivores.  相似文献   

7.
The deep fore-reef at Enewetak has been examined from the submersible Makali'i. Green algae grow to about-150 m at photon flux densities of approximately 1 Em-2s-1. Halimeda cover is 50% at many sites down to-90 m. Halimeda populations are important within the zone of scleractinian corals down to about-65 m, while a Halimeda zone with low coral cover or lacking corals between-65 m and-150 m probably is an important source of reef carbonate. Halimedas of the deep fore-reef, like those of the lagoon, constitute an important structural component in reef building. Other calcareous green algae such as Tydemania are less important on the deep fore-reef, but growth of coralline red algae continues to over-200m. Halimeda diversity is high down to near the base of the euphotic zone.  相似文献   

8.
The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 μatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50–70 % decrease in photochemical efficiency (maximum quantum yield), a 70–80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.  相似文献   

9.
Halimeda is a genus of calcified and segmented green macroalgae in the order Bryopsidales. In New Caledonia, the genus is abundant and represents an important part of the reef flora. Previous studies recorded 19 species that were identified using morphological criteria. The aim of this work was to reassess the diversity of the genus in New Caledonia using morpho‐anatomical examinations and molecular analyses of the plastid tufA and rbcL genes. Our results suggest the occurrence of 22 species. Three of these are reported for the first time from New Caledonia: Halimeda kanaloana, H. xishaensis, and an entity resembling H. stuposa. DNA analyses revealed that the species H. fragilis exhibits cryptic or pseudocryptic diversity in New Caledonia. We also show less conclusive evidence for cryptic species within H. taenicola  相似文献   

10.
Estimates for the production of calcium carbonate by Halimeda spp. have been based on limited measures in small areas or over short periods, subsequently extrapolated over larger temporal and spatial scales. The accuracy of these extrapolations depends on the variations in time and space of the parameters used for the derivations of the production, which were evaluated in the present study for Halimeda incrassata (J. Ellis) J. V. Lamour. in the Puerto Morelos reef lagoon, Mexican Caribbean. Growth, biomass, and CaCO3 content of the branches of the thalli were determined at 1–3 monthly intervals from November 1997 until June 1999, using the marking technique with the coloring agent Alizarin Red‐S. Biomass exhibited great variability (V=25.4%), and fluctuations were closely related to changes in thallus density. Growth and CaCO3‐content changes were related to the solar cycle, having coefficients of 15.4% and 2.5%, respectively. Additionally, calcified biomasses of the thalli were determined over a large spatial (31 stations in ~7 km2 area) and time (6 y) scale. Spatial variability in calcified biomass was 59%, and the coefficient of variation attained its highest value (69%) for the samples collected over a 6 y period, from 1990 to 1996 (except 1995). Based on overall average values, branches of H. incrassata in the study area had a mean turnover of 30 d, with an annual production of 815 g CaCO3 per square meter.  相似文献   

11.
Fragments of the calcareous green alga Halimeda form a large part of the sediment in the fringing reef system and adjacent deep marine environments of Grand Cayman Island, West Indies. Nine species combine to form three depth-related assemblages that are characteristic of the major reef-related environments (lagoonpatch reef, reef terraces, and deep reef). These modern plant assemblages form the basis of the use of Halimeda as a sediment tracer. Halimeda-based tracer studies of Holocene sediments indicate that only sediments containing deep reef species of Halimeda are presently being transported through the reef system by sediment creep and being deposited at the juncture of the upper and lower island slope. Sediments containing shallow reef Halimeda are retained within the reef and lithified by marine carbonate cements. Tracer studies of Pleistocene sediment indicate large amounts of reef-derived carbonate sand containing deep water Halimeda were produced during interglacial high stands of sea level. Much of this material was removed by turbidity currents moving out of the reef system to the island slope down submarine channels perpendicular to the reef trend. These channels may still be identified on bathymetric profiles, but are no longer receiving coarse reef debris and are veneered with a blanket of pelagic carbonate mud.  相似文献   

12.
13.
A new species, Halimeda hummii, and a new variety of Halimeda cryptica Colinvaux and Graham both originally collected from the edge of the continental shelf on the southwest coast of Puerto Rico are newly described. The new species is irregular in its segment morphology and is the smallest species of Halimeda presently known. Halimeda cryptica var. acerifolia from deep water possesses distinctive segments resembling maple leaves. Halimeda copiosa Goreau and Graham and typical H. cryptica are also collected in deep water and are newly recorded from Puerto Rico.  相似文献   

14.
Halimeda opuntia is a cosmopolitan marine calcifying green alga in shallow tropical marine environments. Besides Halimeda’s contribution to a diverse habitat, the alga is an important sediment producer. Fallen calcareous segments of Halimeda spp. are a major component of carbonate sediments in many tropical settings and play an important role in reef framework development and carbonate platform buildup. Consequently the calcification of H. opuntia accounts for large portions of the carbonate budget in tropical shallow marine ecosystems. Earlier studies investigating the calcification processes of Halimeda spp. have tended to focus on the microstructure or the physiology of the alga, thus overlooking the interaction of physiological and abiotic processes behind the formation of the skeleton. By analyzing microstructural skeletal features of Halimeda segments with the aid of scanning electron microscopy and relating their occurrence to known physiological processes, we have been able to identify the initiation of calcification within an organic matrix and demonstrate that biologically induced cementation is an important process in calcification. For the first time, we propose a model for the calcification of Halimeda spp. that considers both the alga’s physiology and the carbon chemistry of the seawater with respect to the development of different skeletal features. The presence of an organic matrix and earlier detected external carbonic anhydrase activity suggest that Halimeda spp. exhibit biotic precipitation of calcium carbonate, as many other species of marine organisms do. On the other hand, it is the formation of micro-anhedral carbonate through the alga’s metabolism that leads to a cementation of living segments. Precisely, this process allows H. opuntia to contribute substantial amounts of carbonate sediments to tropical shallow seas.  相似文献   

15.
Large areas of the inter-reefal seabed in the Great Barrier Reef are carpeted with vegetation composed almost entirely of the green calcareous alga Halineda. These meadows occur principally in the northern sections between 11°30 and 15°35S at depths of 20 to 40 m, but there are also some in the central and southern sections, where they have been found at depths down to 96 m. The vegetation is dominated by the same sprawling Halimeda species that are common on coral reefs in this region. However, on reefs these species grow on solid substrata, not soft sediments like the Halimeda-rich gravels that underlie the meadows. A total of 12 Halimeda species, together with two Udotea and one Penicillus species, are characteristic components of the shallow meadows. Below 50 m depth, species composition is restricted to only two major components. One, H. copiosa, is also important shallower, but the other is an unusually large and heavily calcified form of H. fragilis, a species that is normally a minor, fragile component of the shallow meadows. The maximum biomass found in these meadows was 4637 gm2 of calcareous algae, although the thean for vegetated areas was 525 gm2. These meadows are confined to the nutrient-depleted waters of the outer continental shelf just inside the outer barrier reefs, and are usually associated with distinct shoaling of the seabed caused by accumulation of thick deposits of calcareous Halimeda segments. The meadows are probably supported by very localized upwelling of nutrients from the adjacent Coral Sea onto the shelf, where they enrich the otherwise nutrient-depleted waters.Contribution No.367 from the Australian Institute of Marine Science  相似文献   

16.
This study deals with the mobile fauna living associated with the turfs of three Halimeda species [H. incrassata, H. opuntia (three forms) and H. macroloba] from the Tiahura Reef complex. Ten 0.05 m2 test areas of each Halimeda form have been randomly sampled from each geomorphological reef unit in order to obtain the specific abundance and biomass of different faunistic groups and species living within Halimeda populations. Then the raw data have been classified using the correspondence factor analysis to highlight the relationships between faunistic groups, or species, and the different Halimeda forms studied. The distributional patterns of the faunal communities seems to be controlled by the morphological features of the host-alga. The complex arborescent structure of the rhyzophytic H. incrassata species shelters fauna three times higher in abundance than other Halimeda heads. This fauna is mostly composed of a highly rich community of microcrustaceans and a very diversified community of Syllidae polychaetes. H. macroloba living on the outer reef flat retains a lot of small Nereidae polychaetes and a rich microgastropod assemblage. Dense H. opuntia tussocks (type A) on the fringing-reef and isolated H. opuntia fronds of pendulous chains (type B) on the barrier reef as well as beds of scattered H. opuntia (type C) on the outer reef flat provide environment for larger animals, and according to their zone of life, they retain very different faunal associations. Some ophiuroids, and some fish, collected in H. opuntia A and C, are newly reported from the Society Islands, French Polynesia, and the Pacific province. One Brachyurid species is presumably undescribed.  相似文献   

17.
Facies mapping of a late Miocene reef complex near the town of Níjar (Almería Province, southeastern Spain) demonstrated that Halimeda-rich beds compose about 20% of the proximal-slope sedimets. Halimeda segments are unbroken, preserved as molds, randomly oriented to layered, and concentrated in beds that commonly contain few fossils other than Halimeda. The associated biota (a laminar form of the coral Porites, articulated bivalves, small gastropods, and in-situ branching coralline algae) and sediment texture suggest possible insitu formation of the Halimeda.Repetitive stratigraphy characterizes the proximal reef-slope sediments at Níjar. Each repetition consists of the following idealized succession: an eroded base, mixed-fossil hash, Halimeda-rich beds, and mixed-fossil beds that contain little if any Halimeda. Although Halimeda beds do not dominate in the proximal-slope environment, their local abundance may signify changed environmental conditions.The concentration of Halimeda in beds suggests spatial segregation of Halimeda from many reef-dwelling organisms. The repetitive stratigraphy suggests temporal segregation as well.Episodic upwelling may have been responsible for the repetitive stratigraphy. The occurrence of Halimeda-rich beds in reef complexes of similar age throughout the Spanish Mediterranean region, and the occurrence of possibly correlative cyclic basinal sequences, is consistent with an upwelling mechanism. If responsive to upwelling episodes, Halimeda beds may represent event strata of regional significance.  相似文献   

18.
Complex relationships exist between tropical reef ecology, carbonate (CaCO3) production and carbonate sinks. This paper investigated census-based techniques for determining the distribution and carbonate production of reef organisms on an emergent platform in central Torres Strait, Australia, and compared the contemporary budget with geological findings to infer shifts in reef productivity over the late Holocene. Results indicate that contemporary carbonate production varies by several orders of magnitude between and within the different reef-flat sub-environments depending on cover type and extent. Average estimated reef-flat production was 1.66 ± 1.78 kg m−2 year−1 (mean ± SD) although only 23% of the area was covered by carbonate producers. Collectively, these organisms produce 17,399 ± 18,618 t CaCO3 year−1, with production dominated by coral (73%) and subordinate contributions by encrusting coralline algae (18%) articulated coralline algae, molluscs, foraminifera and Halimeda (<4%). Comparisons between the production of these organisms across the different reef-flat zones, surface sediment composition and accumulation rates calculated from cores indicate that it is necessary to understand the spatial distribution, density and production of each major organism when considering the types and amounts of carbonate available for storage in the various reef carbonate sinks. These findings raise questions as to the reliability of using modal production rates in global models independent of ecosystem investigation, in particular, indicating that current models may overestimate reef productivity in emergent settings. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
The calcareous green algaHalimeda can be a substantial contributor to aragonite sediment in reef ecosystems. In contrast to coral aragonite, little is known about the trace and minor element composition ofHalimeda aragonite, so it is difficult to test oceanographic hypotheses about factors controlling its past growth. We investigated adapting trace element cleaning protocols for modern and HoloceneHalimeda aragonite, modern and HoloceneHalimeda trace and minor element compositions, and the potential utility ofHalimeda aragonite for paleoceanographic investigations. We successfully adapted and applied sample treatment protocols developed for measuring trace elements in coral aragonite (generally less than 500 y old) toHalimeda aragonite (modern to approximately 5000 y old in this study). ModernHalimeda aragonite from John Brewer Reef in the Central GBR had mean Cd/Ca ratios of 5.19 ± 1.68 nmol/mol forHalimeda micronesica and 2.35 ± 0.38 nmol/mol for three closely related species important in bioherm accumulationHalimeda copiosa, Halimeda hederacea, andHalimeda opuntia. Mn/Ca ratios, with means from 89–239 nmol/mol for these four species, showed both intra-and inter-specific variability. Sr/Ca ratios (10.9 ± O.1 mmol/mol) and Mg/Ca ratios (1.35 ± 0.26 mmol/mol) were similar for all samples. HoloceneHalimeda aragonite samples from cores of two bioherms in the northern GBR seemed well preserved on the basis of mineralogy and Sr/Ca and Mg/Ca ratios similar to those in modernHalimeda aragonite. Cd/Ca ratios (overall mean 0.96 ± 0.15 nmol/mol) were lower than those measured in the modernHalimeda from the central GBR location. However, Mn/Ca ratios in both cores were substantially higher than in modernHalimeda aragonite. While it may be possible to extract paleoceanographic information fromHalimeda aragonite, substantial care is needed to evaluate and avoid the effects of post-depositional alteration.  相似文献   

20.
The skeletal composition of 273 sediment samples, collected within 14615 km2 of lagoon habitat in New Caledonia (Ouvea and Chesterfield atolls and eastern and northern lagoons of the main island), was analyzed. Major constituents were molluscs (bivalves and gastropods), foraminifers, andHalimeda plates. The quantitative examination showed that, even in a pure coralline structure such as the two atolls studied, coral debris and calcareous algae, potentially produced within the barrier reef, never constituted a dominant element in the lagoonal sediments. Distribution of coral debris showed that coral is significant only close to the barrier reef (i.e. passes and back-reef slope). From the point of view of sedimentology, this suggests that the major role of the barrier reef is to provide a physical barrier that allows the development and preservation of lagoon sediments. Sedimentation within the lagoon of grains coarser than 63 µm is the result of in situ organic production combined with low hydrodynamic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号