首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capsule Habitats in lowland South Iceland sustain bird populations of international importance, with highest densities in wet habitats.

Aims In areas important for biodiversity there is an urgent need to assess large-scale variation in the biodiversity value of habitats to inform management. We carried out a large-scale survey to assess the conservation value of sub-arctic, Icelandic bird habitats.

Methods Bird counts were carried out on 200 transects in the five most common vegetated habitat types in South Iceland. Based on these counts, breeding bird density and diversity were compared between habitats and total population sizes of common species in these habitats were calculated.

Results Overall, eight species (seven waders and Meadow Pipit) composed over 95% of all birds counted. The combined density of those species exceeded 275 birds/km2 in all habitats. The two wettest habitat types had the highest density of birds.

Conclusion Wet habitats in lowland South Iceland held particularly high densities of breeding birds, notably waders, which constitute populations of international importance. Wet habitat types are generally of higher value for more species, than dryer ones.  相似文献   

2.
Spatial subdivision of species can affect their population structure by allowing processes such as limited dispersal, spatial heterogeneity in selective pressures, small population sizes, and random events to operate. By studying species restricted to islands or “island” habitats, one can attempt to determine which of these factors have affected the current structure of the population. Collops georgianus (Coleoptera: Melyridae), a beetle species endemic to the “island” habitat of granitic rock outcrops, was chosen to see how its spatially subdivided distribution has affected its genetic structure. Its genetic structure was examined on both a macrogeographic and a microgeographic level using protein electrophoresis. Macrogeographically, 12 populations throughout its range were sampled. The discontinuous distribution of outcrops, and thus populations, throughout its range, has determined the connectivity of the populations. Significant variation in allele frequencies and substructuring (FST = 0.192) was found throughout the range, but there was no spatial autocorrelation. Microgeographically, in the central part of the range, where outcrops are denser and more continuously distributed in space, there was evidence of isolation by distance. Very little variation in allele frequencies was found, but a low but significant level of substructuring occurred among the populations. Comparison of disjunct and continuous populations microgeographically revealed no effect of disjunct distributions, although a significant effect of distance was detected. Effective population size variation among populations and between years, compounded with the effects of local extinctions, suggest that random processes such as drift and founder effects are important determinants of the population's genetic structure.  相似文献   

3.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

4.
Jan Pinowski 《Bird Study》2013,60(1):27-33
Capsule Low and variable encounter rates of birds in fragmented arctic‐alpine habitats add difficulty to monitoring their breeding populations.

Aims To quantify seasonal variation in the encounter rates (apparent abundance) of breeding birds in arctic‐alpine habitats in Scotland.

Methods Birds were sampled from 15 repeated linear transects between April and August in 2005 and 2006. glmms (and for scarcer species glms) were used to investigate how the apparent abundance of different species varied between months and years.

Results Three arctic‐alpine specialists (Rock Ptarmigan, Eurasian Dotterel and Snow Bunting) were recorded. The 24 other species recorded included more widely distributed upland species, generalists that also used arctic‐alpine habitats and also some transient species from lower altitude. Overall encounter rates were low (only exceeding 1 bird km?1 in any month for one species; Meadow Pipits) with marked variation between months. The pattern of seasonal variation in encounter rates varied markedly between species.

Conclusions Low encounter rates and marked variation in apparent abundance will render more difficult efforts to monitor birds in marginal and fragmented areas of arctic‐alpine habitats. Particularly relevant is the potential for changes in the timing of breeding and seasonal movements to influence encounter rates and be falsely interpreted as changes in actual abundance. Monitoring in arctic‐alpine habitats should include both specialist and non‐specialist birds of that habitat, as the latter may be more numerous and, therefore, provide supplementary evidence of temporal or seasonal change.  相似文献   

5.
Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.  相似文献   

6.
Natural selection tends to favour optimal phenotypes either through directional or stabilizing selection; however, phenotypic variation in natural populations is common and arises from a combination of biotic and abiotic interactions. In these instances, rare phenotypes may possess a fitness advantage over the more common phenotypes in particular environments, which can lead to adaptation and ecological speciation. A recently radiated clade of dwarf chameleons (Bradypodion) restricted to southern KwaZulu‐Natal Province, South Africa, is currently comprised of two species (Bradypodion melanocephalum and Bradypodion thamnobates), yet three other phenotypic forms exist, possibly indicating the clade is far more speciose. Very little genetic differentiation exists between these five phenotypic forms; however, all are allopatric in distribution, occupy different habitats and vary in overall size and coloration, which may indicate that these forms are adapting to their local environments and possibly undergoing ecological speciation. To test this, we collected morphometric and habitat data from each form and examined whether ecological relevant morphological differences exist between them that reflect their differential habitat use. Sexual dimorphism was detected in four of the five forms. Yet, the degree and number of dimorphic characters was different between them, with size‐adjusted male‐biased dimorphism being much more pronounced in B. thamnobates. Habitat differences also existed between sexes, with males occupying higher perches in more closed canopy (forested) habitats than females. Clear morphological distinctions were detected between four of the five forms, with the head explaining the vast majority of the variation. Chameleons occupying forested habitats tended to possess proportionally larger heads and feet but shorter limbs than those in open canopy habitats (i.e. grassland). These results show that this species complex of Bradypodion is morphologically variable for traits that are ecologically relevant for chameleons, and that the variation among the five phenotypic forms is associated with habitat type, suggesting that this species complex is in the early stages of ecological speciation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 113–130.  相似文献   

7.

Shell repair frequencies in eleven species of Recent gastropods from the northern Gulf of California vary with habitat, shell morphology and intensity of durophagous predation. Squat shells with large apertures tend to have high repair frequencies (0.25–0.50). Shell thickness at the aperture and shell size are not correlated with frequency of repair. Significant intraspecific variation in repair frequency exists between habitats. Samples from rocky habitats have statistically higher repair frequencies than samples of the same species from sandy habitats. However, habitat‐related variation between species is not apparent.

Trends in co‐evolution of gastropods and their durophagous predators are based on the indirect evidence of shell repair frequencies through time. Variation in repair frequency due to environmental and morphological factors may obscure predator‐related temporal trends in repair frequency.  相似文献   

8.
Geographic and environmental isolations of islands and the mainland offer excellent opportunity to investigate colonization and survival dynamics of island populations. We inferred and compared evolutionary processes and the demographic history of Rhododendron tsusiophyllum, in the Izu Islands and the much larger island Honshu, treated here as the mainland, using thousands of nuclear SNPs obtained by ddRAD-seq from eight populations of R. tsusiophyllum and three populations of R. tschonoskii as an outgroup. Phylogenetic relationships and their habitats suggest that R. tsusiophyllum had evolved and migrated from cold north to warm south regions. We detected clear genetic divergence among populations in three regions of Honshu and the Izu Islands, suggesting restricted migration between them due to isolated habitats on mountains even in the mainland. The three regions have different changes in effective population size, especially, genetic diversity and population size of the Izu Islands are small compared to the others. Further, habitats of populations in the Izu Islands are warmer than those in Honshu, suggesting that they have undergone adaptive evolution. Our study provides evidences of montane rather than insular isolation on genetic divergence, survival of populations and significance of adaptive evolution for island populations with small population size and low genetic diversity, despite close proximity to mainland populations.Subject terms: Genetic variation, Plant evolution, Conservation biology  相似文献   

9.
Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole‐genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome‐wide picture of standing natural variation in populations, genome‐wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor‐net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise FST values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. FST outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome‐wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations  相似文献   

10.

Species are often arranged along a continuum from “specialists” to “generalists”. Specialists typically use fewer resources, occur in more patchily distributed habitats and have overall smaller population sizes than generalists. Accordingly, the specialist-generalist variation hypothesis (SGVH) proposes that populations of habitat specialists have lower genetic diversity and are genetically more differentiated due to reduced gene flow compared to populations of generalists. Here, expectations of the SGVH were tested by examining genetic diversity, spatial genetic structure and contemporary gene flow in two sympatric woodpecker species differing in habitat specialization. Compared to the generalist great spotted woodpecker (Dendrocopos major), lower genetic diversity was found in the specialist middle spotted woodpecker (Dendrocoptes medius). Evidence for recent bottlenecks was revealed in some populations of the middle spotted woodpecker, but in none of the great spotted woodpecker. Substantial spatial genetic structure and a significant correlation between genetic and geographic distances were found in the middle spotted woodpecker, but only weak spatial genetic structure and no significant correlation between genetic and geographic distances in the great spotted woodpecker. Finally, estimated levels of contemporary gene flow did not differ between the two species. Results are consistent with all but one expectations of the SGVH. This study adds to the relatively few investigations addressing the SGVH in terrestrial vertebrates.

  相似文献   

11.
Five populations of Pinus rigida growing in contrasting ecological situations ranging from North Carolina (35°53'N latitude) to Quebec (45°06'N latitude) showed no significant variation in amounts of nuclear DNA with respect to germinating seedlings. Nuclear volume of dormant nuclei also showed no significant variation between and within populations, a finding that is consistent with the concept that the basic 2C DNA value of Pinus rigida is uniform under all habitats. This finding is in contrast to numerous reports for other coniferous species.  相似文献   

12.
Genetic variation in natural populations: patterns and theory.   总被引:27,自引:0,他引:27  
Allozymic variation in natural populations of plants, animals, and humans based on studies published prior to early 1976 and involving 243 species, in which 14 or more loci were tested, is herein reviewed. Explanatory models are compared and contrasted in view of the evidence to see which theories best explain genetic variation in natural populations. The analysis suggests that the amounts of genetic polymorphism and heterozygosity vary nonrandomly between loci, populations, species, habitats, and life zones, and are correlated with ecological heterogeneity. Natural selection, in some form, may often be the major determinant of genetic population structure and differentiation. Yet precise critical experiments must be designed to test possible alternative hypotheses, to establish direct cause-effect relationships between ecological and genetic profiles, and to assay the contribution of single and multilocus structures to fitness.  相似文献   

13.
Clémencet J  Doums C 《Oecologia》2007,152(2):211-218
In social insects, colony size is a crucial life-history trait thought to have major implications for the evolution of social complexity, especially in relation to worker size polymorphism. Yet, little is known about how ecological factors can affect and constrain colony. Here, we explored the pattern of colony-size and worker-size variation in the Mediterranean ant Cataglyphis cursor, in relation to the type of habitats colonized (seaside vs. vineyard). The high level of the water table in the seaside habitat could constrain the depth of C. cursor underground nests and directly constrain its colony size. If worker size increases with colony size, as observed in other ant species, larger colony size and larger workers should be found in the vineyard populations. By comparing worker size among 16 populations, we verified that workers were significantly larger in the vineyard populations. We further determined that the morphological similarities detected among populations from the same habitat type were not due to geographic or genetic proximity. In two populations from each habitat type, the depth of nests was positively correlated with colony size and colony size with worker size. Using a type II regression approach, we further showed that the difference between the two populations in the depth of nest was sufficient to explain the difference in colony size, and similarly, variation in colony size was sufficient to explain variation in worker size. Our results suggest that a single proximate ecological factor could lead to significant variation in major life-history parameters.  相似文献   

14.
Although variation in oviposition preference and specificity for host plants has been demonstrated within populations of a variety of oligophagous insect species, it is unknown whether genetic variation in host choice is lost within populations of monophagous species. Analysis of a locally monophagous butterfly species, Papilio oregonius, and a locally oligophagous species, P. zelicaon, showed significant variation in oviposition preference within populations of both species. Females of both species chose primarily their native hosts. Nonetheless, the percentages of eggs laid by individual females among the plant species and the number of plant species on which individual females laid eggs differed significantly among isofemale strains within populations. Moreover, some females within all isofemale strains of both species laid a few eggs on Foeniculum vulgare, an umbelliferous species that does not occur in the native habitats of these populations but is a host for Papilio species in other geographic areas. The results suggest that local monophagy and oligophagy in these species reflect the relative ranking among potential plant species. Both populations harbor variation in oviposition choice that could allow for host shifts if these populations invaded new habitats.  相似文献   

15.
Busseola fusca (Fuller), Sesamia calamistis Hampson, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand) are important stem borer pests of maize and sorghum in East Africa. Persistence of these pests in crop fields is blamed on the influx of diaspore populations from the neighbouring natural habitats. In addition to pest species, natural habitats support numerous non-economic stem borer species, some not known to science. However, due to growing human populations and accompanying global change, some of the natural habitats are undergoing rapid changes, a process that may result in the evolution of “new” pest species. In this study, we investigated stem borer species diversity in four different vegetation mosaics in Kenya, with an aim of establishing the differences in species composition and distributions in both wild and cultivated habitats. We identified 33 stem borer species belonging to 14 different genera in the four families; Noctuidae, Crambidae, Pyralidae and Tortricidae from 37 plant species. In addition to the above stem borer pest species, we found three more species, Busseola segeta Bowden, Pirateolea piscator Fletcher and Eldana saccharina Walker, in the cultivated fields. Together, stem borer pests varied in distribution among vegetation mosaics, suggesting differences in ecological requirement. Despite the variations in distribution patterns, stem borer pests co-existed with non-economic species in the natural habitats, communities that are facing threats due to ongoing habitat changes. This paper discusses the likely impacts of habitat changes on both pest and non-economic species.  相似文献   

16.
The evolutionary processes that produce adaptive radiations are enigmatic. They can only be studied after the fact, once a radiation has occurred and been recognized, rather than while the processes are ongoing. One way to connect pattern to process is to study the processes driving divergence today among populations of species that belong to an adaptive radiation, and compare the results to patterns observed at a deeper, macroevolutionary level. We tested whether evolution is a deterministic process with similar outcomes during different stages of the adaptive radiation of Anolis lizards. Using a clade of terrestrial–scansorial lizards in the genus Anolis, we inferred the adaptive basis of spatial variation among contemporary populations and tested whether axes of phenotypic differentiation among them mirror known axes of diversification at deeper levels of the anole radiation. Nonparallel change associated with genetic divergence explains the vast majority of geographic variation. However, we found phenotypic variation to be adaptive as confirmed by convergence in populations occurring in similar habitats in different mountain ranges. Morphological diversification among populations recurs deterministically along two axes of diversification previously identified in the anole radiation, but the characters involved differ from those involved in adaptation at higher levels of anole phylogeny.  相似文献   

17.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

18.
Aim To understand global patterns of genetic variation in plant species on mountains and to consider the significance of mountains for the genetic structure and evolution of plant species. Location Global. Methods We review published studies. Results Genetic diversity within populations can vary along altitudinal gradients in one of four patterns. Eleven of 42 cited studies (26% of the total) found that populations at intermediate altitudes have greater diversity than populations at lower and higher altitudes. This is because the geographically central populations are under optimal environmental conditions, whereas the peripheral populations are in suboptimal situations. The second pattern, indicating that higher populations have less diversity than lower populations, was found in eight studies (19%). The third pattern, indicating that lower populations have lower diversity than higher populations, was found in 10 studies (24%). In 12 studies (29%), the intrapopulation genetic variation was found to be unaffected by altitude. Evidence of altitudinal differentiation was found in more than half of these studies, based on measurements of a range of variables including genome size, number of chromosomes or a range of loci using molecular markers. Furthermore, great variation has been found in phenotypes among populations at different altitudes in situ and in common garden experiments, even in cases where there was no associated variation in molecular composition. Mountains can be genetic barriers for species that are distributed at low elevations, but they can also provide pathways for species that occupy high‐elevation habitats. [Correction added after publication 9 October 2007: ‘less diversity’ changed to ‘greater diversity’ in the second sentence of the Results section of the Abstract] Main conclusions Genetic diversity within populations can vary along altitudinal gradients as a result of several factors. The results highlight the importance of phenotypic examinations in detecting altitudinal differences. The influence of mountain ridges on genetic differentiation varies depending, inter alia, on the elevation at which the species occurs. Based on these findings, zoning by altitudes or ridges would be helpful for the conservation of tree populations with the onset of global warming.  相似文献   

19.

Aim

How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient.

Location

Himalaya-Hengduan Mountains, China.

Methods

We combined evidence from population genomics and ecological data in both space and time to investigate the state of “staying” or “moving”. We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate-driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient.

Results

Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic-driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid-elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal-driven selection and continuous adaptations to high elevation in the Himalaya-Hengduan Mountains.

Main Conclusions

Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change.  相似文献   

20.

Background

While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m) may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes) across its wide distributional range in Chile and Argentina.

Results

Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data.

Conclusions

Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号