首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
大肠癌是消化道常见的恶性肿瘤之一,发病率和死亡率均较高。过继免疫治疗是当今肿瘤治疗的热点,已逐步成为一些肿瘤的首选治疗方法。树突状细胞(DC)是目前已知功能最强大的抗原呈递细胞,具有呈递肿瘤抗原和抵制肿瘤细胞免疫逃逸及刺激T淋巴细胞产生免疫应答的作用。细胞因子诱导的杀伤细胞(CIK)由多种细胞因子诱导而成,具有T淋巴细胞及NK细胞抗肿瘤作用的特点。DC和CIK细胞有效结合可以同时促进DC细胞的增殖和免疫功能及加强CIK细胞的抗肿瘤作用。本文就近年来国内外应用DC-CIK治疗大肠癌的研究进展进行综述。  相似文献   

2.
结缔组织生长因子是具有多种生物学活性的细胞因子,与细胞增殖、分化、凋亡、粘附、胚胎发育及伤口愈合等过程有关,近年来发现,在硬皮病、动脉粥样硬化、系统性硬化症和一些良恶性肿瘤等多种疾病中,结缔组织生长因子的表达水平出现了不同程度的升高或降低,与疾病的发生、发展关系密切。  相似文献   

3.
IL-8是趋化因子CXC家族的一员,是一种多细胞来源的细胞因子,在细胞的多种炎症反应中起调节作用,并且在自身免疫性疾病中也发挥重要作用。IL-8通过与细胞膜上的CXC趋化因子受体CXCR1和CXCR2相互作用,激活偶联的G蛋白,由G蛋白进一步激活PLC、AC、PLD、PI3K、JAK2及Ras等信号分子,从而调控基因表达、细胞增殖和分化、细胞代谢、细胞运动及血管生成等多种细胞生命过程。IL-8在多种恶性肿瘤细胞中表达量升高,其高表达与肿瘤细胞增殖、迁移、侵袭、血管生成及上皮间充质转化有密切联系。肿瘤免疫逃逸是肿瘤细胞产生和转移过程中的主要特征之一,肿瘤细胞可以通过多种机制使得人体免疫系统无法对其进行正常的识别和攻击,从而导致肿瘤细胞在体内存活,并且不断增殖和转移,而肿瘤细胞、免疫细胞以及肿瘤微环境中其他相关组分均可以促进肿瘤免疫逃逸。IL-8作为一种炎性趋化因子,已被证明在肿瘤免疫逃逸中具有重要作用,其可通过诱导肿瘤细胞PD-L1表达、抑制肿瘤细胞凋亡、促进肿瘤细胞EMT进程、促进肿瘤微环境血管生成、招募免疫抑制性细胞等五个方面介导肿瘤免疫逃逸。IL-8中和抗体和CXCR1/2拮抗剂在抗肿瘤治疗方面已经显示出较好的治疗效果。  相似文献   

4.
最近的研究表明问充质干细胞(mesenchymal stem cells,MSCs)与多种肿瘤的发生发展有密切关系.MSCs对多种肿瘤具有趋向性,外源性(局部混合注射或静脉注射)MSCs可参与肿瘤间质的形成,同时MSCs的免疫抑制作用可以促进肿瘤在体内的生长.通过细胞因子介导或直接的细胞接触,MSCs与多种肿瘤细胞之间存在相互作用.MSCs可以抑制肿瘤细胞的的凋亡,促进肿瘤细胞的增殖及肿瘤的转移.由于MSCs易于分离、体外扩增及进行基因修饰,因此可以利用MSCs对肿瘤的趋向性,使MSCs携带抗肿瘤基因来实现对肿瘤的靶向治疗.  相似文献   

5.
每年全球大约有38万宫颈癌新发病例,已成为现今世界女性最常见的妇科恶性肿瘤之一,高危型人类乳头瘤病毒(HPV-16、18等)是公认的宫颈癌的致病因素。研究证实HPV E7原癌基因的产物HPV E7原癌蛋白通过与抑癌蛋白p Rb结合,诱导p Rb的降解,导致宫颈上皮细胞永化生,致细胞生长增殖失控及细胞凋亡程序发生异常是HPV诱导宫颈癌发生的一个主要机制。细胞因子信号传导抑制蛋白(suppressor of cytokine signaling,SOCS)家族是由细胞产生的,可通过反馈调节来阻断细胞因子信号转导过程的一类负性调节因子,SOCS-1可抑制多种细胞因子的信号转导途径,调控体内多种免疫反应,现有研究表明SOCS-1可通过诱导E7蛋白降解来抑制HPV E7介导的异常转化。而且socs-1在癌细胞中表达明显降低,说明SOCS-1可能是抑癌基因,其失活机制主要是甲基化和杂合性缺失,所以说SOCS-1的甲基化和杂合性缺失对宫颈癌的发生、发展起着至关重要的作用,因此SOCS-1的去甲基化及打破基因沉默可能是一种潜在的治疗宫颈癌的新策略。  相似文献   

6.
肿瘤相关炎症是近年来肿瘤免疫领域的研究热点。炎症被称为恶性肿瘤的第八大生物学特征,其在肿瘤发生发展、侵袭转移过程中发挥重要作用。肿瘤微环境中存在大量的炎症细胞因子,如IL-1、IL-6、IL-12、IL-17、TNF-α和TGF-β,它们不仅可以募集炎症细胞到肿瘤部位,放大炎症效应,还可促进肿瘤细胞生长和转移,促进肿瘤血管、淋巴管生成。现主要从炎症细胞因子及肿瘤微环境入手,旨在探讨炎症细胞因子介导的慢性炎症在肿瘤发生发展过程中的重要作用,及其作为肿瘤治疗靶点的转化医学的研究进展及展望。  相似文献   

7.
富血小板血浆是近些年来比较热门的一种血液制品,其来源于自体,且制备方法简单,又富含大量血小板及多种生长因子,能够加速骨愈合,增强骨再生,促进软组织及神经损伤恢复,因此得到了广泛的关注。国内外的研究人员根据富血小板血浆所具有的特点,针对各个方面对其进行了大量的研究实验,并且在临床骨科疾病的治疗中也已经开始了实验性应用,如骨缺损、骨再生,肌腱、韧带及软组织损伤,脊柱脊髓损伤等。尤其是在脊柱脊髓损伤的治疗方面,无论是单独应用富血小板血浆治疗,还是联合应用富血小板血浆与脊髓神经前体细胞、骨髓间充质干细胞等有利于脊髓神经损伤恢复的细胞因子复合物共同治疗,均取得了突破性的进展,为研究脊柱脊髓损伤的治疗提供了新的方向。  相似文献   

8.
血小板衍生生长因子(Platelet-Derived Growth Factor,PDGF)是一类与生长、发育、癌症发生等密切相关的细胞因子,由多种细胞分泌产生,具有广泛的生物学活性,涉及多种疾病.目前关于PDGF分子结构、表达调控、生物学活性等已有较为深入的研究,本文在介绍上述研究成果的同,对PDGF在妇科肿瘤中的病理生理作用进一步综合分析.PDGF参与卵泡的发生;PDGF与子宫肌瘤、宫颈、卵巢癌等疾病相关联.PDGF在妇科肿瘤的发生、发展中起着重要的作用.  相似文献   

9.
近年来,在世界范围内,恶性肿瘤的发病率越来越高,严重威胁着人类的身体健康和生活质量。恶性肿瘤最主要的特征之一就是侵袭和转移,一旦进入晚期阶段或者发生转移,现阶段最常用的治疗方法如外科手术、化学治疗和放射治疗等很难对其起到理想的治疗效果。上皮间质转化是指紧密的排列规则的上皮细胞转化为疏松的排列紊乱的间充质细胞。它的主要特征是上皮标志物(如E-cadherin)的表达降低和间质标记物(如N-cadherin,vimentin)的表达升高。干细胞转录因子Nanog是维持胚胎干细胞自我更新和多潜能性的重要调控因子,它参与多种恶性肿瘤的发生与进展,如子宫内膜腺癌、胃腺癌、结直肠癌和肺腺癌等。它可以通过肿瘤干细胞样作用及上皮间质转化过程来促进肺腺癌的进展。在肝癌细胞远处转移过程中Nanog也参与了上皮间质转化过程。本研究对近年来关于转录因子Nanog在恶性肿瘤细胞上皮间质转化过程中作用的研究进行了综述和讨论。  相似文献   

10.
白细胞介素12在细胞免疫及抗肿瘤中的作用   总被引:2,自引:0,他引:2  
IL-12是由巨噬细胞和B细胞产生的一种二聚体细胞因子,是具有多种生物活性的免疫效应细胞生长刺激因子。细胞因子网络在维持免疫功能,促进机体抗感染方面起重要作用。特别是能促进T细胞和NK细胞的增殖与杀瘤作用,诱导IFN-γ等多种细胞因子的产生,调节Th1细胞发育,因而具有良好的抗癌作用。  相似文献   

11.
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.  相似文献   

12.
Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications.  相似文献   

13.
Background aimsUn-engineered human and rat umbilical cord matrix stem cells (UCMSCs) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSCs attenuate tumor growth has not been studied rigorously.MethodsThe possible mechanisms of tumor growth attenuation by rat UCMSCs were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemistry analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines.ResultsRat UCMSCs markedly attenuated tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemistry analysis revealed that most infiltrating lymphocytes in the rat UCMSC-treated tumors were CD3+ T cells. In addition, treatment with rat UCMSCs significantly increased infiltration of CD8+ and CD4+ T cells and natural killer (NK) cells throughout tumor tissue. CD68+ monocytes/macrophages and Foxp3+ regulatory T cells were scarcely observed, only in the tumors of the phosphate-buffered saline control group. Microarray analysis of rat UCMSCs demonstrated that monocyte chemotactic protein-1 is involved in rat UCMSC-induced lymphocyte infiltration in the tumor tissues.ConclusionsThese results suggest that naïve rat UCMSCs attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Naïve UCMSCs can be used as powerful therapeutic cells for breast cancer treatment, and monocyte chemotactic protein-1 may be a key molecule to enhance the effect of UCMSCs at the tumor site.  相似文献   

14.
BackgroundCNS tumors are the leading cause of cancer related deaths among children and adolescents. Nonetheless, the incidence of pediatric CNS tumors in developing countries is poorly understood. We aimed to provide epidemiologic features of primary malignant CNS tumors in Iranian children 0–19 years of age using National Cancer Registry (NCR) data bank.MethodsThe data recorded by NCR over a 10 year period (2000–2010) were reviewed.ResultsOf 1948 tumor cases, 93.3% were located in brain, 5.1% were found in the spinal cord & cauda equina, and 1.6% affected cranial nerves and other parts of the nervous system. The overall average annual age specific incidence rate was 1.43 per 100,000. Males were more likely to develop CNS tumors (1.65 per 100,000) compared to females (1.21 per 100,000, p < 0.01). Children under 5 years of age had the highest age specific incidence rate (1.86 per 100,000). Astrocytic tumors with the incidence rate of 0.61 per 100,000 were the most frequent specific histology followed by embryonal (0.38 per 100,000), and ependymal tumors (0.10 per 100,000). With regard to the histological distribution of tumors, some unique features including the high proportion of unspecified malignant neoplasms (7.6%) were noted.ConclusionThe overall incidence rate was markedly lower than western findings. Major differences were also observed in incidence rates of specific histologies. Although the discrepancies may be attributable to diversity in classification schemes and registration practices, a real ethnic and geographical variation in predisposition to development of pediatric CNS cancers is strongly suggested.  相似文献   

15.
The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 m1J mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 m1J mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 m1J mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors.  相似文献   

16.
The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment 1. Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions 1-2. However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion3. Matrix density 4, stiffness 5-6, and structure 6-7, interstitial fluid pressure 8, and interstitial fluid flow 8 are all altered during cancer progression.Interstitial fluid flow in particular is higher in tumors compared to normal tissues 8-10. The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s-1, depending on tumor size and differentiation 9, 11. This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability 12. Interstitial fluid flow has been shown to increase invasion of cancer cells 13-14, vascular fibroblasts and smooth muscle cells 15. This invasion may be due to autologous chemotactic gradients created around cells in 3-D 16 or increased matrix metalloproteinase (MMP) expression 15, chemokine secretion and cell adhesion molecule expression 17. However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts 18, (b) transporting of antigens and other soluble factors to lymph nodes 19, and (c) modulating lymphatic endothelial cell morphogenesis 20.The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion 13-15, 17. By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.  相似文献   

17.
Studies have indicated that platelets play an important role in tumorigenesis, and an abundance of platelets accumulate in the ovarian tumor microenvironment outside the vasculature. However, whether cancer cells recruit platelets within intestinal tumors and how they signal adherent platelets to enter intestinal tumor tissues remain unknown. Here, we unexpectedly found that large numbers of platelets were deposited within human colorectal tumor specimens using immunohistochemical staining, and these platelets were fully associated with tumor development. We further report the robust adhesion of platelet aggregates to tumor cells within intestinal tumors, which occurs via a mechanism that is dependent on P-selectin (CD62P), a cell adhesion molecule that is abundantly expressed on activated platelets. Using spontaneous intestinal tumor mouse models, we determined that the genetic deletion of P-selectin suppressed intestinal tumor growth, which was rescued by the infusion of wild-type platelets but not P-selectin-/- platelets. Mechanistically, platelet adhesion to tumor cells induced the secretion of vascular endothelial growth factor (VEGF) to promote angiogenesis and accelerate intestinal tumor cell proliferation. Our results indicate that the adherence of platelets to tumor cells could promote tumor growth and metastasis. By targeting this platelet-tumor cell interaction, recombinant soluble P-selectin may have therapeutic value for the treatment of intestinal tumors.  相似文献   

18.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-??+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-??+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.  相似文献   

19.
BackgroundAscites is associated with the poor prognosis of malignant tumors. The biological importance of the changes in the content of trace elements in the ascitic fluid is unknown. Herein, we analyzed trace elements in the ascitic fluid of patients with ovarian tumors and used cultured cells to determine the copper (Cu)-induced changes in gene expression in ovarian cancer.MethodsInductively coupled plasma mass spectrometry (ICP-MS) was used to compare ascitic fluid trace element levels in patients with benign ovarian tumors (n = 22) and borderline/malignant tumors (n = 5) for primary screening. Cu levels were validated using atomic absorption spectrometry (AAS) in 88 benign, 11 borderline, and 25 malignant ovarian tumor patients. To confirm Cu-induced gene expression changes, microarray analysis was performed for Cu-treated OVCAR3, A2780, and Met5A cells. The vascular endothelial growth factor (VEGF) concentration in the cell supernatant or ascitic fluid (ovarian cancer samples) was measured using ELISA.ResultsICP-MS showed that Co, Ni, Cu, Zn, As, Se, and Mo levels significantly increased in patients with malignant/borderline ovarian tumors compared to those in patients with benign ovarian tumors. AAS showed that malignant ovarian tumors were independently associated with elevated levels of Cu in ascites adjusted for age, body mass index, alcohol, smoking, and supplement use (p < 0.001). Microarray analysis of both Cu-treated ovarian cancer cell lines OVCAR3 and A2780 and the mesothelial cell line Met-5A revealed the upregulation of the angiogenesis biological process. Real-time polymerase chain reaction and ELISA demonstrated that an increased Cu content significantly enhanced VEGF mRNA expression and protein secretion in OVCAR3, A2780, and Met-5A cells. VEGF levels and clinical stages of the tumors correlated with the ascitic fluid Cu content in patients with malignant ovarian tumors (correlation coefficient 0.445, 95 % confidence interval [CI]: 0.069–0.710, p = 0.023 and correlation coefficient 0.406, 95 % CI: 0.022–0.686, p = 0.040, respectively).ConclusionCu levels significantly increased in patients with malignant ovarian cancer. Cu induced angiogenic effects in ovarian cancer and mesothelial cells, which affected ascites fluid production. This study clarifies the link between elevated Cu in ascites and malignant ovarian tumor progression. Strategies to decrease Cu levels in the ascitic fluid may help downregulate VEGF expression, thereby improving the prognosis of ovarian malignancies.  相似文献   

20.
Previous studies have demonstrated antitumor efficacy of Virulizin in several human tumor xenograft models and a critical role for macrophages in the antitumor mechanism of Virulizin. Although there is growing support for an immune stimulatory mechanism of action for Virulizin, the details remain to be elucidated. The aim of this study was to determine whether infiltration of natural killer (NK) cells into xenografted tumors is altered by Virulizin treatment, and whether such alterations contribute to the antitumor activity of Virulizin. Immunohistochemical analysis demonstrated that xenografted tumors from Virulizin-treated mice had an increase in infiltration of F4/80+ (macrophages) and NK1.1+ (NK) cells. The increase in NK1.1+ cell infiltration occurred at an early stage of Virulizin treatment, which correlated with an early sign of apoptosis. In addition, Virulizin resulted in an increase in the number of NK cells in the spleens, and NK cells isolated from the spleen exhibited increased cytotoxicity to tumor cells in vitro. In NK cell–deficient SCID-beige mice, the antitumor activity of Virulizin was compromised, providing additional support to the hypothesis that NK cells are necessary for inhibition of tumor growth by Virulizin. Finally, depletion of macrophages resulted in the loss of Virulizin-induced increase in NK1.1+ cell infiltration into xenografted tumors, suggesting the involvement of macrophages in NK cell infiltration into tumors. Taken together, these results strongly support a mechanism in which Virulizin stimulates a sustained expansion and infiltration of NK cells and macrophages into tumors with subsequent activation of NK cells that is responsible for the observed antitumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号