首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The relative contributions of the sympathetic nervous system and the adrenal medullae, the two components of the sympathoadrenal system, to the manifestations of hypoglycemia are largely unknown. We tested the hypothesis that the neurogenic symptoms of hypoglycemia are largely the result of sympathetic neural activation. To do so, we quantitated neurogenic symptoms, as well as norepinephrine (NE) kinetics and selected hemodynamic changes, during hyperinsulinemic euglycemic and stepped hypoglycemic clamps in 15 healthy control subjects (Controls) and four bilaterally adrenalectomized patients (ADX). Plasma epinephrine responses to hypoglycemia were virtually absent in ADX, as expected. Neurogenic symptom scores increased to higher values during the hypoglycemic compared with the euglycemic clamps in both Controls (P < 0.0001) (e.g., final scores of 7.8 +/- 1.2 vs. 3.0 +/- 0.7) and ADX (P < 0.0001) (e.g., final scores of 10.8 +/- 4.1 vs. 2.5 +/- 1.0). Plasma NE concentrations (P < 0.0001) and systemic NE spillover (P = 0.0007) increased during the hypoglycemic compared with the euglycemic clamps in Controls but not in ADX. Similarly, heart rate increased (P = 0.0104), diastolic blood pressure decreased (P = 0.0003), and forearm blood flow increased (P < 0.0001) during the hypoglycemic compared with the euglycemic clamps in Controls but not in ADX. These data indicate that the neurogenic symptoms of hypoglycemia are largely the result of sympathetic neural, rather than adrenomedullary, activation. They also suggest that the plasma NE and hemodynamic responses to hypoglycemia are largely the result of adrenomedullary, rather that sympathetic neural, activation.  相似文献   

2.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

3.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

4.
Corticotrophin releasing hormone (CRH), dehydroepiandrosterone sulfate (DHEAS) and cortisol were measured in umbilical cord plasma obtained from 90 preterm and 98 term fetuses. Maternal plasma was obtained from 23 women who delivered preterm and from 23 women matched for gestational age who ultimately delivered term infants. Mean umbilical cord plasma CRH concentration was significantly higher in the preterm fetuses (n = 69, 538 +/- 63 pg/ml) compared to the term fetuses (n = 98, 280 +/- 22 pg/ml, P < 0.01). Mean DHEAS level in the preterm fetuses was 208 +/- 22 mg/dl (n = 56), cortisol level was 7 +/- 1 mg/dl (n = 58). Umbilical plasma CRH concentrations (808 +/- 170 pg/ml) were significantly higher at 24-27 weeks than at 28-31 or 31-34 weeks gestation. Cortisol levels (12 +/- 3 micrograms/dl) were highest at 24-27 weeks. Mode of delivery and the presence of labor did not affect fetal CRH levels. The highest fetal CRH levels were measured in the pregnancies complicated by hypertension as well as prematurity; however, fetal CRH levels remained higher in the preterm group compared to the term group when hypertensive pregnancies were excluded. Maternal plasma CRH levels were significantly higher in the group that delivered preterm compared to women who delivered at term matched for gestational age (1058 +/- 184 pg/ml compared to 456 +/- 71 pg/ml, P < 0.00).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for patients with comorbid diabetes and depression. Clinical case studies in diabetic patients, however, suggest that SSRI therapy may exacerbate hypoglycemia. We hypothesized that SSRIs might increase the risk of hypoglycemia by impairing hormonal counterregulatory responses (CRR). We evaluated the effect of the SSRI sertraline on hormonal CRR to single or recurrent hypoglycemia in nondiabetic rats. Since there are time-dependent effects of SSRIs on serotonin neurotransmission that correspond with therapeutic action, we evaluated the effect of 6- or 20-day sertraline treatment on hypoglycemia CRR. We found that 6-day sertraline (SERT) treatment specifically enhanced the epinephrine response to a single bout of hypoglycemia vs. vehicle (VEH)-treated rats (t = 120: VEH, 2,573 +/- 448 vs. SERT, 4,202 +/- 545 pg/ml, P < 0.05). In response to recurrent hypoglycemia, VEH-treated rats exhibited the expected impairment in epinephrine secretion (t = 60: 678 +/- 73 pg/ml) vs. VEH-treated rats experiencing first-time hypoglycemia (t = 60: 2,081 +/- 436 pg/ml, P < 0.01). SERT treatment prevented the impaired epinephrine response in recurrent hypoglycemic rats (t = 60: 1,794 +/- 276 pgl/ml). In 20-day SERT-treated rats, epinephrine, norepinephrine, and glucagon CRR were all significantly elevated above VEH-treated controls in response to hypoglycemia. Similarly to 6-day SERT treatment, 20-day SERT treatment rescued the impaired epinephrine response in recurrent hypoglycemic rats. Our data demonstrate that neither 6- nor 20-day sertraline treatment impaired hormonal CRR to hypoglycemia in nondiabetic rats. Instead, sertraline treatment resulted in an enhancement of hypoglycemia CRR and prevented the impaired adrenomedullary response normally observed in recurrent hypoglycemic rats.  相似文献   

6.
The effect of a hypercalcemia-producing Leydig cell tumor on vascular reactivity in Fischer rats was studied. Seven to eight days after tumor implantation, there was no difference between tumor (T) and control (C) animals in serum calcium, serum phosphate, plasma catecholamine levels, mean arterial pressure (MAP), or blood pressure responses to norepinephrine (NE) infusion. At day 12-13 of tumor growth, the serum calcium in the tumor-bearing rats was significantly higher (12.2 +/- 0.8 vs. 9.7 +/- 0.3 mg%, P less than .01) and their serum phosphate significantly lower (4.5 +/- 0.3 vs. 5.7 +/- 0.4 mg%, P less than .01) than controls. Plasma epinephrine (E) (497 +/- 154 vs. 62 +/- 13 pg/ml, P less than .05), and norepinephrine (NE) (686 +/- 85 vs. 329 +/- 75 pg/ml, P less than .01) were markedly elevated in the tumor rats. MAP and the blood pressure responses to graded NE infusions were significantly lower in tumor animals at Day 12-13, whereas there was no change in sensitivity to angiotensin II (AII) infusions. In vitro contractile responses of tail artery segments to transmural nerve stimulation (TNS) in animals with tumors were lower than in controls but there were no differences in sensitivity to exogenous NE in vitro. These results suggest that the tumor stimulates production of a circulating factor which desensitizes NE receptors and that this tumor also decreases neurovascular function by an undefined mechanism.  相似文献   

7.
The anatomic connections of the paraventricular nucleus of the hypothalamus (PVN) are such that it is ideally situated to modulate and/or control autonomic responses to a variety of stressors, including hypoglycemia. In our experimental model of hypoglycemia-associated autonomic failure (HAAF), a syndrome in which the counterregulatory response to hypoglycemia is partially compromised via unknown mechanisms, activation of the PVN is blunted (15). We hypothesized that this blunted PVN activation during HAAF may be sufficient to cause the impaired counterregulatory response. To test this hypothesis, we anesthetized the PVN with lidocaine during insulin-induced hypoglycemia in rats and measured counterregulatory hormone levels. PVN inactivation decreased indexes of the sympathoadrenal response (plasma epinephrine and norepinephrine) and the hypothalamic-pituitary axis response (ACTH). Inactivation decreased the peak epinephrine response to hypoglycemia by almost half (-42 +/- 6% from control; P = 0.04) and the peak norepinephrine response by 34 +/- 5% (P = 0.01). The peak plasma ACTH levels attained were suppressed by 35 +/- 6% (P = 0.02). Adrenal corticosterone and pancreatic glucagon responses were not impaired. This pattern of neuroendocrine response is unlike that previously seen with our HAAF model. Control infusions of lidocaine >or=1 mm anterior or posterior to the PVN did not simulate this neuroendocrine pattern. Thus it appears that decreased PVN activation, as occurs with HAAF, may be involved in specific components of HAAF (i.e., blunting the sympathoadrenal and hypothalamic-pituitary-adrenocortical axis response), but not in others (i.e., blunting the glucagon response).  相似文献   

8.
Stimulation of endogenous opiate secretion worsens circulatory dysfunction in several forms of shock, in part by inhibiting sympathetic activity. To investigate whether endogenous opiates have a similar effect in chronic heart failure (HF), we measured beta-endorphin concentrations and hemodynamic responses to naloxone infusion (2 mg/kg bolus + 2 mg.kg-1 x h-1) in six control (C) dogs and eight dogs with low-output HF produced by 3 wk of rapid ventricular pacing. The dogs with HF exhibited reduced arterial blood pressure (C, 123 +/- 4 vs. HF, 85 +/- 7 mmHg; P < 0.01) and cardiac outputs (C, 179 +/- 14 vs. HF, 76 +/- 2 ml.min-1 x kg-1; P < 0.01) and elevated plasma norepinephrine concentrations (C, 99 +/- 12 vs. HF, 996 +/- 178 pg/ml; P < 0.01) but normal beta-endorphin concentrations (C, 30 +/- 11 vs. HF, 34 +/- 12 pg/ml; P = NS). Naloxone produced similar transitory increases in blood pressure (C, 14 +/- 5 vs. HF, 26 +/- 25%) and cardiac output (C, 37 +/- 13 vs. HF, 22 +/- 15%) in both groups (both P = NS). No significant changes in norepinephrine concentration or systemic vascular resistance were observed in either group. These findings suggest that beta-endorphin secretion does not exacerbate circulatory dysfunction in chronic heart failure.  相似文献   

9.
The effects of oral carbohydrate on modulating counterregulatory responses in humans remain undecided. This study's specific aim was to determine the effects of oral carbohydrate on autonomic nervous system (ANS) and neuroendocrine responses during hyperinsulinemic hypoglycemia and euglycemia. Nineteen healthy volunteers were studied during paired, single blind experiments. Nine subjects underwent two-step glucose clamps consisting of 60 min of euglycemia (5.0 mmol/l) followed by either 15 g of oral carbohydrate (cal) as orange juice or a noncaloric control (nocal) and subsequent 90 min of clamped hypoglycemia (2.9 mmol/l). Ten other subjects underwent two randomized 150-min hyperinsulinemic-euglycemic clamps with cal or nocal control administered at 60 min. Oral carbohydrate initially blunted (P < 0.05) epinephrine, norepinephrine, cortisol, glucagon, pancreatic polypeptide, muscle sympathetic nerve activity (MSNA), symptom, and systolic blood pressure responses during hypoglycemia. However, by the end of 90 min of hypoglycemia, plasma epinephrine and norepinephrine responses had rebounded and were increased (P < 0.05) compared with control. MSNA and cortisol levels remained suppressed during hypoglycemia (P < 0.05) after cal, whereas pancreatic polypeptide, glucagon, symptom, and blood pressure responses increased similar to control following initial suppression. Oral carbohydrate had no effects on neuroendocrine or ANS responses during hyperinsulinemic euglycemia. These results demonstrate that oral carbohydrate can have differential effects on the time course of ANS and neuroendocrine responses during hypoglycemia. We conclude that gastro-splanchnic-portal sensing of an amount of carbohydrate recommended for use in clinical practice for correction of hypoglycemia can have widespread and significant effects on central nervous system mediated counterregulatory responses in healthy humans.  相似文献   

10.
In the present study the hypothesis tested was that prior exercise may blunt counterregulatory responses to subsequent hypoglycemia. Healthy subjects [15 females (f)/15 males (m), age 27 +/- 1 yr, body mass index 22 +/- 1 kg/m(2), hemoglobin A(Ic) 5.6 +/- 0.5%] were studied during 2-day experiments. Day 1 involved either 90-min morning and afternoon cycle exercise at 50% maximal O2 uptake (VO2(max)) (priorEXE, n = 16, 8 m/8 f) or equivalent rest periods (priorREST, n = 14, 7 m/7 f). Day 2 consisted of a 2-h hypoglycemic clamp in all subjects. Endogenous glucose production (EGP) was measured using [3-3H]glucose. Muscle sympathetic nerve activity (MSNA) was measured using microneurography. Day 2 insulin (87 +/- 6 microU/ml) and plasma glucose levels (54 +/- 2 mg/dl) were equivalent after priorEXE and priorREST. Significant blunting (P < 0.01) of day 2 norepinephrine (-30 +/- 4%), epinephrine (-37 +/- 6%), glucagon (-60 +/- 4%), growth hormone (-61 +/- 5%), pancreatic polypeptide (-47 +/- 4%), and MSNA (-90 +/- 8%) responses to hypoglycemia occurred after priorEXE vs. priorREST. EGP during day 2 hypoglycemia was also suppressed significantly (P < 0.01) after priorEXE compared with priorREST. In summary, two bouts of exercise (90 min at 50% VO2(max)) significantly reduced glucagon, catecholamines, growth hormone, pancreatic polypeptide, and EGP responses to subsequent hypoglycemia. We conclude that, in normal humans, antecedent prolonged moderate exercise blunts neuroendocrine and metabolic counterregulatory responses to subsequent hypoglycemia.  相似文献   

11.
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.  相似文献   

12.
Responses of plasma ACTH and cortisol to corticotropin-releasing factor (CRF) were evaluated in 31 normal human males. 1.0 micrograms/ks of sterilized synthetic ovine CRF was administered to the subjects, aged 19 to 53 yr and weighing 50 to 78 kg, at between 9:30 a.m. and 10:30 a.m. as an intravenous bolus injection after an overnight fast. Blood specimens were drawn before and 15, 30, 60, 90 and 120 min after injection for later determination of plasma ACTH and cortisol concentrations by radioimmunoassays. Plasma ACTH and cortisol levels for all subjects rose significantly (p less than 0.001) from the basal level (mean +/- SEM, 26.8 +/- 4.5 pg/ml and 12.6 +/- 0.9 micrograms/dl) to peak levels (58.4 +/- 5.5 pg/ml and 22.9 +/- 1.0 micrograms/dl) at 30 min and at 60 min, respectively. Although the plasma concentrations of ACTH and cortisol thereafter declined gradually, the levels at 120 min (43.4 +/- 5.2 pg/ml and 18.9 +/- 0.9 micrograms/ml, respectively) were still significantly higher than the basal levels (p less than 0.001). Significant inverse correlations were observed between the basal levels of each hormone and the ratio of the peak level to the basal level (p less than 0.01), and the increases in plasma ACTH and cortisol concentrations were either not significant or much smaller for the individuals in whom the basal levels were higher than 65 pg/ml and 17.0 micrograms/dl, respectively. No serious subjective symptom was observed during the experimental period in any of the subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The fetal ovine pituitary-adrenal axis plays an important role in the timing of parturition, in fetal lung maturation, and in fetal and neonatal responses to stress. While the ovine pituitary during the last third of gestation (term = 145 days) is capable of secreting immunoreactive ACTH (iACTH) in response to various stimuli, plasma cortisol levels frequently do not reflect the rise in plasma ACTH. Therefore, we examined the relationship between plasma iACTH and steroidogenic ACTH-like activity (bACTH) in a group of immature fetal lambs (Group I: gestational age = 97 +/- 2 days, mean +/- SEM, n = 16) and a group of near-term fetuses (Group II: gestational age = 136 +/- 1 days, n = 13) following acute exteriorization. Plasma iACTH was determined by RIA. Plasma bACTH was determined by the ability of glass-extracted material to stimulate corticosterone (B) production in an acutely dispersed rat adrenal bioassay. Plasma iACTH and bACTH levels varied among animals within age groups, with iACTH tending to be higher in immature fetal lambs (Group I) than near-term lambs (Group II) and bACTH being higher (P < 0.05) near term than earlier (Group I: iACTH = 807 +/- 273 pg/ml, bACTH = 173 +/- 44 pg/ml; Group II: iACTH = 405 +/- 85 pg/ml, bACTH = 371 +/- 96 pg/ml). The proportion of iACTH that had biologic activity (e.g. B/I ratio) was significantly greater in the older than in the younger fetuses (Group II: B/I = 0.862 +/- 0.109; Group I: B/I = 0.462 +/- 0.105 P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human urotensin-II (hU-II) is the most potent endogenous cardiostimulant identified to date. We therefore determined whether hU-II has a possible pathological role by investigating its levels in patients with congestive heart failure (CHF). Blood samples were obtained from the aortic root, femoral artery, femoral vein, and pulmonary artery from CHF patients undergoing cardiac catheterization and the aortic root from patients undergoing investigative angiography for chest pain who were not in heart failure. Immunoreactive hU-II (hU-II-ir) levels were determined with radioimmunoassay. hU-II-ir was elevated in the aortic root of CHF patients (230.9 +/- 68.7 pg/ml, n = 21; P < 0.001) vs. patients with nonfailing hearts (22.7 +/- 6.1 pg/ml, n = 18). This increase was attributed to cardiopulmonary production of hU-II-ir because levels were lower in the pulmonary artery (38.2 +/- 6.1 pg/ml, n = 21; P < 0.001) than in the aortic root. hU-II-ir was elevated in the aortic root of CHF patients with nonischemic cardiomyopathy (142.1 +/- 51.5 pg/ml, n = 10; P < 0.05) vs. patients with nonfailing hearts without coronary artery disease (27.3 +/- 12.4 pg/ml, n = 7) and CHF patients with ischemic cardiomyopathy (311.6 +/- 120.4 pg/ml, n = 11; P < 0.001) vs. patients with nonfailing hearts and coronary artery disease (19.8 +/- 6.6 pg/ml, n = 11). hU-II-ir was significantly higher in the aortic root than in the pulmonary artery and femoral vein, with a nonsignificant trend for higher levels in the aortic root than in the femoral artery. The findings indicated that hU-II-ir is elevated in the aortic root of CHF patients and that hU-II-ir is cleared at least in part from the microcirculation.  相似文献   

15.
Body fluid homeostasis was investigated during chronic bed rest (BR) and compared with that of acute supine conditions. The hypothesis was tested that 6 degrees head-down BR leads to hypovolemia, which activates antinatriuretic mechanisms so that the renal responses to standardized saline loading are attenuated. Isotonic (20 ml/kg body wt) and hypertonic (2.5%, 7.2 ml/kg body wt) infusions were performed in eight subjects over 20 min following 7 and 10 days, respectively, of BR during constant sodium intake (200 meq/day). BR decreased body weight (83.0 +/- 4.8 to 81.8 +/- 4.4 kg) and increased plasma osmolality (285.9 +/- 0.6 to 288.5 +/- 0.9 mosmol/kgH(2)O, P < 0.05). Plasma ANG II doubled (4.2 +/- 1.2 to 8.8 +/- 1.8 pg/ml), whereas other endocrine variables decreased: plasma atrial natriuretic peptide (42 +/- 3 to 24 +/- 3 pg/ml), urinary urodilatin excretion rate (4.5 +/- 0.3 to 3.2 +/- 0.1 pg/min), and plasma vasopressin (1.7 +/- 0.3 to 0.8 +/- 0.2 pg/ml, P < 0.05). During BR, the natriuretic response to the isotonic saline infusion was augmented (39 +/- 8 vs. 18 +/- 6 meq sodium/350 min), whereas the response to hypertonic saline was unaltered (32 +/- 8 vs. 29 +/- 5 meq/350 min, P < 0.05). In conclusion, BR elicits antinatriuretic endocrine signals, but it does not attenuate the renal natriuretic response to saline stimuli in men; on the contrary, the response to isotonic saline is augmented.  相似文献   

16.
Obesity blunts catecholamine and growth hormone (GH) responses to exercise in adults, but the effect of obesity on these exercise-associated hormonal responses in children is unclear. Therefore, the aim of the present study was to asses the effect of childhood obesity on the counterregulatory hormonal response to acute exercise. Twenty-five obese children (Ob; body mass index > 95%), and 25 age, gender, and maturity-matched normal-weight controls (NW) participated in the study. Exercise consisted of ten 2-min bouts of constant-cycle ergometry above the anaerobic threshold, with 1-min rest intervals between each bout. Pre-, post-, and 120-min postexercise blood samples were collected for circulating components of the GH-IGF-I axis and catecholamines. There were no differences in peak exercise heart rate, serum lactate, and peak O2 uptake normalized to lean body mass between the groups. Obesity attenuated the GH response to exercise (8.9 +/- 1.1 vs. 3.4 +/- 0.7 ng/ml in NW and Ob participants, respectively; P < 0.02). No significant differences in the response to exercise were found for other components of the GH-IGF-I axis. Obesity attenuated the catecholamine response to exercise (epinephrine: 52.5 +/- 12.7 vs. 18.7 +/- 3.7 pg/ml, P < 0.02; norepinephrine: 479.5 +/- 109.9 vs. 218.0 +/- 26.0 pg/ml, P < 0.04; dopamine: 17.2 +/- 2.9 vs. 3.5 +/- 1.9 pg/ml, P < 0.006 in NW and Ob, respectively). Insulin levels were significantly higher in the obese children and dropped significantly after exercise in both groups. Despite the elevated insulin levels and the blunted counterregulatory response, none of the participants developed hypoglycemia. Childhood obesity was associated with attenuated GH and catecholamine response to acute exercise. These abnormalities were compensated for, so that exercise was not associated with hypoglycemia, despite increased insulin levels in obese children.  相似文献   

17.
Plasma corticotropin-releasing factor (CRF), corticotropin (ACTH) and cortisol levels were simultaneously determined by radioimmunoassays at 0600 h, 1200 h, 1800 h and 2200 h in six normal subjects, in order to examine whether the diurnal rhythm in plasma CRF exists and how it correlates to the diurnal rhythm in plasma ACTH and cortisol concentration. The highest CRF level was observed at 0600 h (7.0 +/- 1.2 pg/ml) and significantly lower levels (p less than 0.01) at 1800 h (1.7 +/- 0.2 pg/ml) and 2200 h (1.9 +/- 0.4 pg/ml). A clear diurnal rhythm was demonstrated in plasma ACTH and cortisol levels, with the highest values at 0600 h (44.6 +/- 8.1 pg/ml and 15.9 +/- 2.0 micrograms/dl, respectively) and the lowest at 2200 h (12.3 +/- 2.8 pg/ml and 4.6 +/- 1.0 micrograms/ml, respectively). These results suggest that the diurnal rhythm in ACTH and cortisol is under the regulation, at least in part, of the diurnal rhythm in CRF secretion.  相似文献   

18.
Portal infusion of glucose at rates approximating endogenous glucose production (EGP) causes paradoxical hypoglycemia in wild-type but not GLUT2 null mice, implying activation of a specific portal glucose sensor. To determine whether this occurs in humans, glucose containing [3-3H]glucose was infused intraduodenally at rates of 3.1 mg. kg-1. min-1 (n = 5), 1.55 mg. kg-1. min-1 (n = 9), or 0/0.1 mg. kg-1. min-1 (n = 9) for 7 h in healthy nondiabetic subjects. [6,6-2H2]glucose was infused intravenously to enable simultaneous measurement of EGP, glucose disappearance, and the rate of appearance of the intraduodenally infused glucose. Plasma glucose concentrations fell (P < 0.01) from 90 +/- 1 to 84 +/- 2 mg/dl during the 0/0.1 mg. kg-1. min-1 id infusions but increased (P < 0.001) to 104 +/- 5 and 107 +/- 3 mg/dl, respectively, during the 1.55 and 3.1 mg. kg-1. min-1 id infusions. In contrast, insulin increased (P < 0.05) during the 1.55 and 3.0 mg. kg-1. min-1 infusions, reaching a peak of 10 +/- 2 and 18 +/- 5 micro U/ml, respectively, by 2 h. Insulin concentrations then fell back to concentrations that no longer differed by study end (7 +/- 1 vs. 8 +/- 1 micro U/ml). This resulted in comparable suppression of EGP by study end (0.84 +/- 0.2 and 0.63 +/- 0.1 mg. kg-1. min-1). Glucose disappearance was higher (P < 0.01) during the final hour of the 3.1 than 1.55 mg. kg-1. min-1 id infusion (4.47 +/- 0.2 vs. 2.6 +/- 0.1 mg. kg-1. min-1), likely because of the slightly, but not significantly, higher glucose and insulin concentrations. We conclude that, in contrast to mice, selective portal glucose delivery at rates approximating EGP does not cause hypoglycemia in humans.  相似文献   

19.
The effect of insulinhypoglycemia and arginine infusion on circulating concentrations of plasma growth hormone-releasing hormone (GHRH) and growth hormone (GH) has been studied in 24 children (4.4 to 14.3 years). Plasma GH and GHRH concentrations were determined by RIA. Basal plasma GHRH levels were detectable in the plasma of all patients ranging from 6.8 to 27.1 pg/ml. Injection of 0.1 U/kg body wt. insulin i.v. resulted in an increase of plasma GHRH levels (11.1 +/- 1.4 pg/ml vs. 18.8 +/- 2.6 pg/ml; P less than 0.01) preceding that of plasma GH (1.5 +/- 0.4 ng/ml vs. 13.6 +/- 1.3 ng/ml; P less than 0.01). Infusion of 0.5 gm/kg body wt. arginine hydrochloride did increase GH concentrations (2.0 +/- 0.6 ng/ml vs. 13.9 +/- 2.3 ng/ml; P less than 0.01) but did not change circulating plasma GHRH levels. Since the source of peripheral GHRH concentrations is not known the importance of these findings remains to be determined.  相似文献   

20.
Two lines of rainbow trout selected for high (HR) and low (LR) responsiveness to a standardised confinement stressor displayed a sustained divergence in plasma cortisol levels during a 3-h period of confinement (max.: HR: 167+/-13 ng ml(-1); LR: 103+/-8 ng ml(-1); P<0.001). However, no significant difference in plasma ACTH levels was evident (max: HR: 153+/-9 pg ml(-1); LR: 142+/-7 pg ml(-1)). Dexamethasone (DEX) was administered to HR and LR fish to block endogenous adrenocorticotropin (ACTH) release. Administration of a weight-adjusted dose of ACTH to the DEX-blocked fish elevated plasma cortisol levels to a significantly greater extent in HR (233+/-24 ng ml(-1)) than LR (122+/-14 ng ml(-1)) fish (P<0.001). Plasma cortisol levels in DEX-blocked HR and LR fish after sham injection were low but also significantly different (HR: 6.7+/-1 ng ml(-1); LR: 2.2+/-0.2 ng ml(-1); P<0.001). These results indicate that modulation of cortisol responsiveness to stressors in HR and LR fish resides, at least in part, downstream of the hypothalamic-pituitary axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号