首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
口蹄疫病毒感染宿主细胞的第一步是病毒与被感染细胞表面的某种受体结合,在这种受体的介导下,病毒颗粒才能进入细胞内。细胞受体是决定口蹄疫病毒宿主特异性和组织特异性的主要因素之一。口蹄疫病毒受体的研究对于揭示口蹄疫病毒的致病免疫机理具有重要价值。就近年来已发现的αvβ1、αvβ3、αvβ6、αvβ8四种整联蛋白和硫酸乙酰肝素受体作一综述。  相似文献   

2.
病毒受体是引发宿主受病毒感染的主要决定因素。病毒受体是指位于宿主细胞表面能被病毒吸附蛋白识别并与之结合 ,从而引起病毒感染的分子复合物。病毒吸附于宿主细胞表面是病毒感染的起始环节。而病毒受体与病毒吸附蛋白的结合是有其特异性的 ,即病毒感染细胞具有不同的组织嗜性和宿主范围。1 .病毒受体的本质病毒受体可分为单分子或多分子复合体。从生化角度上来说 ,大多数是蛋白聚糖、脂类或糖脂、糖蛋白 3种类型。硫酸乙酰肝素蛋白聚糖为单纯疱疹病毒的受体 ,多瘤病毒和正粘病毒的受体为糖蛋白及糖脂的神经节苷脂。部分病毒受体是细胞表…  相似文献   

3.
硫酸肝素蛋白多糖广泛分布于动物组织的细胞膜和细胞外基质,对于机体发育和维持生理平衡至关重要.聚糖链硫酸肝素特有的分子结构使得这类大分子复合物具有多种生物功能,这些功能主要通过与蛋白质配体的结合实现.细胞表面的硫酸肝素蛋白多糖介导多种细胞活性因子与其受体的结合,参与信号转导的过程.硫酸肝素蛋白多糖也是细胞间质的重要组成部分,与胶原蛋白一起维持间质结构的稳定.肝素酶通过降解硫酸肝素从而调节细胞因子的活性和细胞间质的微环境.因此,揭示硫酸肝素的分子结构及其功能是生物学的一个重要研究方向.然而,由于硫酸肝素结构复杂,且不均一,使得这个领域的研究发展相对缓慢.不过,随着分析手段的提高和完善,国际上对于硫酸肝素结构与功能的报道迅速增加,同时国内对于硫酸肝素的研究也逐步受到重视.关于硫酸肝素的生理功能最近已有几篇比较全面的综述.此综述主要介绍硫酸肝素在病变中的作用,旨在探讨利用硫酸肝素和肝素酶作为靶标,研发预防和治疗这些疾病药物的可能性.  相似文献   

4.
受体是病毒宿主嗜性和致病机制的主要决定因素。硫酸乙酰肝素(HS)是一种多聚阴离子碳水化合物, 广泛存在于真核细胞的细胞膜和细胞基质。HS是许多病毒在细胞膜上的特异受体或辅助受体。目前发现口蹄疫病毒可利用HS和整联蛋白(αvβ3、αvβ6、αvβ1、αvβ8)作为病毒受体。口蹄疫病毒可能在不同的感染阶段利用不同类型的受体与宿主细胞相互作用。研究病毒受体的结构和功能对理解病毒与宿主细胞的关系具有重要意义。本文主要论述了HS的生物学特性及其与口蹄疫病毒感染的关系。  相似文献   

5.
受体是病毒宿主嗜性和致病机制的主要决定因素.硫酸乙酰肝素(HS)是一种多聚阴离子碳水化合物,广泛存在于真核细胞的细胞膜和细胞基质.HS是许多病毒在细胞膜上的特异受体或辅助受体.目前发现口蹄疫病毒可利用HS和整联蛋白(ανβ3、ανβ6、ανβ1、ανβ8)作为病毒受体.口蹄疫病毒可能在不同的感染阶段利用不同类型的受体与宿主细胞相互作用中.研究病毒受体的结构和功能对理解病毒与宿主细胞的关系具有重要意义.本文主要论述了HS的生物学特性及其与口蹄疫病毒感染的关系.  相似文献   

6.
人类疱疹病毒7型能感染以CD4^ T细胞为主的多种组织和细胞。人类疱疹病毒7型和人类疱疹病毒6型一样,主要引起婴幼儿急疹、玫瑰糠疹等疾病。CD4、硫酸乙酰肝素是人类疱疹病毒7型已知的主要受体,CXCR4可能是协同受体。由于与人类免疫缺陷病毒有共同受体,人类疱疹病毒7型在人类免疫缺陷病毒防治研究中具有重要意义。  相似文献   

7.
口蹄疫病毒(FMDV)感染过程中的特异性受体是FMDV识别,结合宿主细胞的分子基础,研究FMDV受体的结构与功能对防治口蹄疫具有重要的理论意义和应用价值。本论述了近年来关于整联蛋白αvβ3,αvβ6和硫酸乙酰肝素(HS)三种FMDV受体的结构与功能的研究进展。  相似文献   

8.
多胺与细胞的增殖和分化密切相关。二氟甲基鸟氨酸是细胞内多胺合成的抑制剂常,作为化疗药物用于肿瘤的治疗,但其效果有时不明显,因此多采用和其他化疗药物联合应用的方案。外源性多胺的摄取依赖细胞表面的硫酸乙酰肝素,硫酸乙酰肝素可以与多种生长因子、细胞因子及化学因子结合而激活细胞的信号传递,促进细胞的增殖和血管生成。联合应用多胺合成抑制剂和硫酸乙酰肝素抑制剂对肿瘤的治疗具有良好的效果。  相似文献   

9.
应用人血清清蛋白代替LDS,建立了肝素释放细胞表面与受体结合的LDL的方法,并比较了人及家兔LDL结合家兔细胞表面受体的能力。在37℃不同保温时间(从0—180分钟),肝素释放的细胞表面受体~(125)I-LDL量增加缓慢而通过受体进入细胞的LDL量增加迅速。在37℃以不同剂量的LDL(13—78μg/ml)与细胞保温2小时,肝素释放的细胞表面受体LDL量也增加缓慢,而进入细胞的量增加更为迅速。结果显示LDL在细胞表面受体部位不断进入细胞内并迅速被新的LDL分子所取代,但当LDL增至78μg/ml时逐渐变慢,与Goldstein观察相似。肝素释放的~(125)LDL量在加入量约50 μg/ml时呈现平坦,与Goldstein观察相似。这说明用人血清清蛋白代替LDS同样可以观察到LDL受体的饱和特性。在同一实验条件下。肝素释放家兔的~(125)I-LDL比人高l倍,家兔通过受体进入细胞的~(125)I-LDL比人高1.7倍。二者差别非常显著(P<0.001)。显示兔血清LDL的结构可能在某些方面不同于人。  相似文献   

10.
周跃钢 《生命科学》2010,(8):749-754
病毒感染的初期事件包括病毒与细胞表面受体的相互作用和进入细胞的过程,而病毒的宿主细胞专一性很大程度上取决于这一阶段的专一识别特征和特殊要求。人乳头状瘤病毒、人免疫缺陷病毒和单纯疱疹病毒是感染人类的几种常见病原物,该文简要综述和讨论了与人体健康关系密切的这三种重要病毒表面的蛋白组分、宿主细胞表面受体及其相互作用和病毒的细胞进入的研究进展,以及在以病毒的细胞进入过程为靶点的抗病毒药物研发中的应用前景。  相似文献   

11.
Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycosaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 (E2:1, E2:70, and E2:114) have been identified that mutate during adaptation and independently confer on the virus the ability to bind to cell surface HS (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72:7357-7366, 1998). In this study, we used HS-adapted SIN mutants to evaluate a new model system involving target liposomes containing lipid-conjugated heparin (HepPE) as an HS receptor analog for the virus. HS-adapted SIN, but not nonadapted wild-type SIN TR339, interacted efficiently with HepPE-containing liposomes at neutral pH. Binding was competitively inhibited by soluble heparin. Despite the efficient binding of HS-adapted SIN to HepPE-containing liposomes at neutral pH, there was no fusion under these conditions. Fusion did occur, however, at low pH, consistent with cellular entry of the virus via acidic endosomes. At low pH, wild-type or HS-adapted SIN underwent fusion with liposomes with or without HepPE with similar kinetics, suggesting that interaction with the HS receptor analog at neutral pH has little influence on subsequent fusion of SIN at low pH. Finally, Semliki Forest virus (SFV), passaged frequently on BHK-21 cells, also interacted efficiently with HepPE-containing liposomes, indicating that SFV, like other alphaviruses, readily adapts to cell surface HS. In conclusion, the liposomal model system presented in this paper may serve as a novel tool for the study of receptor interactions and membrane fusion properties of HS-interacting enveloped viruses.  相似文献   

12.
Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.  相似文献   

13.
The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ), a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.  相似文献   

14.
Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.  相似文献   

15.
Although alphaviruses have been extensively studied as model systems for the structural organization of enveloped viruses, no structures exist for the phylogenetically distinct eastern equine encephalomyelitis (EEE)-Venezuelan equine encephalomyelitis (VEE) lineage of New World alphaviruses. Here we report the 25-A structure of VEE virus, obtained from electron cryomicroscopy and image reconstruction. The envelope spike glycoproteins of VEE virus have a T=4 icosahedral arrangement, similar to that observed in Old World Sindbis, Semliki Forest, and Ross River alphaviruses. However, VEE virus has pronounced differences in its nucleocapsid structure relative to nucleocapsid structures repeatedly observed in Old World alphaviruses.  相似文献   

16.
Three Aedes albopictus (mosquito) cell lines persistently infected with Sindbis virus excluded the replication of both homologous (various strains of Sindbis) and heterologous (Aura, Semliki Forest, and Ross River) alphaviruses. In contrast, an unrelated flavivirus, yellow fever virus, replicated equally well in uninfected and persistently infected cells of each line. Sindbis virus and Semliki Forest virus are among the most distantly related alphaviruses, and our results thus indicate that mosquito cells persistently infected with Sindbis virus are broadly able to exclude other alphaviruses but that exclusion is restricted to members of the alphavirus genus. Superinfection exclusion occurred to the same extent in three biologically distinct cell clones, indicating that the expression of superinfection exclusion is conserved among A. albopictus cell types. Superinfection of persistently infected C7-10 cells, which show a severe cytopathic effect during primary Sindbis virus infection, by homologous virus does not produce cytopathology, consistent with the idea that cytopathology requires significant levels of viral replication. A possible model for the molecular basis of superinfection exclusion, which suggests a central role for the alphavirus trans-acting protease that processes the nonstructural proteins, is discussed in light of these results.  相似文献   

17.
Alphaviruses are enveloped arboviruses. The viral envelope is derived from the host cell and is positioned between two icosahedral protein shells (T = 4). Because the viral envelope contains glycoproteins involved in cell recognition and entry, the integrity of the envelope is critical for the success of the early events of infection. Differing levels of cholesterol in different hosts leads to the production of alphaviruses with distinct levels of this sterol loaded in the envelope. Using Mayaro virus, a New World alphavirus, we investigated the role of cholesterol on the envelope of alphavirus particles assembled in either mammalian or mosquito cells. Our results show that although quite different in their cholesterol content, Mayaro virus particles obtained from both cells share a similar high level of lateral organization in their envelopes. This organization, as well as viral stability and infectivity, is severely compromised when cholesterol is depleted from the envelope of virus particles isolated from mammalian cells, but virus particles isolated from mosquito cells are relatively unaffected by cholesterol depletion. We suggest that it is not cholesterol itself, but rather the organization of the viral envelope, that is critical for the biological activity of alphaviruses.  相似文献   

18.
The extracellular sulfatases (Sulfs) are an evolutionally conserved family of heparan sulfate (HS)-specific 6-O-endosulfatases. These enzymes remodel the 6-O-sulfation of cell surface HS chains to promote Wnt signaling and inhibit growth factor signaling for embryonic tissue patterning and control of tumor growth. In this study we demonstrate that the avian HS endosulfatases, QSulf1 and QSulf2, exhibit the same substrate specificity toward a subset of trisulfated disaccharides internal to HS chains. Further, we show that both QSulfs associate exclusively with cell membrane and are enzymatically active on the cell surface to desulfate both cell surface and cell matrix HS. Mutagenesis studies reveal that conserved amino acid regions in the hydrophilic domains of QSulf1 and QSulf2 have multiple functions, to anchor Sulf to the cell surface, bind to HS substrates, and to mediate HS 6-O-endosulfatase enzymatic activity. Results of our current studies establish the hydrophilic domain (HD) of Sulf enzymes as an essential multifunctional domain for their unique endosulfatase activities and also demonstrate the extracellular activity of Sulfs for desulfation of cell surface and cell matrix HS in the control of extracellular signaling for embryonic development and tumor progression.  相似文献   

19.
Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".  相似文献   

20.
Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号