首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Our purpose was to assess compensatory breathing responses to airway resistance unloading in ponies. We hypothesized that the carotid bodies and hilar nerve afferents, respectively, sense chemical and mechanical changes caused by unloading, hence carotid body-denervated (CBD) and hilar nerve-denervated ponies (HND) might demonstrate greater ventilatory responses when decreasing resistance. At rest and during treadmill exercise, resistance was transiently reduced approximately 40% in five normal, seven CBD, and five HND ponies by breathing gas of 79% He-21% O2 (He-O2). In all groups at rest, He-O2 breathing did not consistently change ventilation (VE), breathing frequency (f), tidal volume (VT), or arterial PCO2 (PaCO2) from room air-breathing levels. During treadmill exercise at 1.8 mph-5% grade in normal and HND ponies, He-O2 breathing did not change PaCO2 but at moderate (6 mph-5% grade), and heavy (8 mph-8% grade) work loads, absolute PaCO2 tended to decrease by 1 min of resistance unloading. delta PaCO2 calculated as room air minus He-O2 breathing levels at 1 min demonstrated significant changes in PaCO2 during exercise resistance unloading (P less than 0.05). No difference between normal and HND ponies was found in exercise delta PaCO2 responses (P greater than 0.10); however, in CBD ponies, the delta PaCO2 during unloading was greater at any given work load (P less than 0.05), suggesting finer regulation of PaCO2 in ponies with intact carotid bodies. During heavy exercise VE and f increased during He-O2 breathing in all three groups of ponies (P less than 0.05), although there were no significant differences between groups (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objective of the present study was to determine the effect of elevated inspired CO2 on respiratory dead space (VD) of 12 normal, 8 carotid body-denervated (CBD), 7 hilar nerve-denervated (HND), and 6 CBD+HND ponies. The Fowler technique was used to determine VD on a breath-by-breath basis while the ponies breathed room air and inspired CO2 at 3 and 6%. During room air breathing, tidal volume (VT) and VD were greater in HND ponies than in normal and CBD ponies (P less than 0.05), and VT was less and VD/VT was greater after CBD than before CBD. For all groups. VD, VT, and breathing frequency (f) increased and VD/VT decreased significantly (P less than 0.01) with increasing inspired CO2. During CO2 breathing, VT and VD were higher (P less than 0.05) in the HND ponies than in all other groups, the decrease (P less than 0.05) in VD/VT was greatest in the CBD+HND group, and f was lower in the HND and HND+CBD than in the normal and CBD ponies. In addition, when inspired CO2 was increased from 0 to 6%, the decrease in VD/VT was greater and the increase in arterial PCO2 was less (P less than 0.05) after CBD than before CBD. For 70% of the ponies in all groups, VD increased linearly with increases in VT; for most of the remainder, VD tended to plateau at higher values of VT.  相似文献   

3.
We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We determined the effects of denervating the hilar branches (HND) of the vagus nerves on breathing and arterial PCO2 (PaCO2) in awake ponies during eupnea and when inspired PCO2 (PICO2) was increased to 14, 28, and 42 Torr. In five carotid chemoreceptor-intact ponies, breathing frequency (f) was less, whereas tidal volume (VT), inspiratory time (TI), and ratio of TI to total cycle time (TT) were greater 2-4 wk after HND than before HND. HND per se did not significantly affect PaCO2 at any level of PICO2, and the minute ventilation (VE)-PaCO2 response curve was not significantly altered by HND. Finally, the attenuation of a thermal tachypnea by elevated PICO2 was not altered by HND. Accordingly, in carotid chemoreceptor-intact ponies, the only HND effect on breathing was the change in pattern classically observed with attenuated lung volume feedback. There was no evidence suggestive of a PCO2-H+ sensory mechanism influencing VE, f, VT, or PaCO2. In ponies that had the carotid chemoreceptors denervated (CBD) 3 yr earlier, HND also decreased f, increased VT, TI, and TT, but did not alter the slope of the VE-PaCO2 response curve. However, at all levels of elevated PICO2, the arterial hypercapnia that had persistently been attenuated, since CBD was restored to normal by HND. The data suggest that during CO2 inhalation in CBD ponies a hilar-innervated mechanism influences PaCO2 by reducing physiological dead space to increase alveolar ventilation.  相似文献   

5.
The objective of this study was to determine the role of hilar nerve (lung vagal) afferents in the hyperpnea of exercise. Ten ponies were studied before and 2-4 wk and 3-12 mo after sectioning only the hilar branches of the vagus nerves (HND). After HND, lung volume feedback to the medullary centers was attenuated as indicated in the anesthetized state by 1) attenuation or absence of the Hering-Breuer inflation reflex (P less than 0.01) and 2) attenuation of the lengthened inspiratory time (TI) when the airway was occluded at end expiration (P less than 0.01). Moreover, after HND in the awake state, there was an increase in the ratio of TI to total cycle time (P less than 0.01). These changes verify a compromise in lung innervation comparable to cervical vagotomy. Resting arterial PCO2, PO2, and pH were not altered following HND (P greater than 0.10). Moreover, at three levels of mild and moderate treadmill exercise, no difference in either the temporal pattern or the absolute levels of arterial blood gases and arterial pH was found between pre- and post-HND studies (P greater than 0.10). In addition, minute ventilation (VE) at rest and during exercise was not altered by HND (P greater than 0.10). However, 2-4 wk after HND the increase in breathing frequency (f) during exercise was less, whereas the increase in tidal volume during exercise was greater than pre-HND (P less than 0.05). The reduced f was due to an increase in TI with no change in expiratory time. We conclude that lung afferents via the hilar nerves influence the pattern of breathing at rest and during exercise in ponies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to determine whether there was any recovery of the Hering-Breuer inflation reflex in ponies between 2-4 wk and 3-4 yr after hilar nerve denervation (HND). Under anesthesia and before HND, airway occlusion after a 3-liter lung inflation lengthened the subsequent occluded breath by nearly 10 times the control breath duration. Between 2 wk and 3-4 yr after HND, this maneuver increased the duration of the occluded breath by only 2.5 times the control breath duration. Also under anesthesia, the airway was occluded at end expiration. This maneuver increased the duration of the subsequent inspiratory effort by 71% in hilar nerve intact ponies but by only 20-25% 2-4 wk and 3-4 yr after HND. For both tests, the pre- and post-HND differences were statistically significant (P less than 0.05), but there were no significant differences (P greater than 0.10) between 2-4 wk and 3-4 yr post-HND. In awake ponies, at rest and during mild and moderate treadmill exercise, breathing frequency was generally lower and inspiratory time was greater after relative to before HND. The inspiratory time-to-total cycle duration ratio was consistently increased by 0.10-0.15 after HND (P less than 0.05). There was no significant change in this ratio between 2-4 wk and 3-4 yr post-HND (P greater than 0.10). We conclude that the surgical procedure for HND used in this study does not permit any significant reinnervation, and there are no significant changes within the ventilatory control system to compensate for loss of hilar nerve afferents.  相似文献   

7.
Abdominal muscles are selectively active in normal subjects during stress and may increase the potential energy for inspiration by reducing the end-expiratory lung volume (EELV). We hypothesized that a similar process would occur in subjects with myotonic muscular dystrophy (MMD), but would be less effective, because of to their weakness and altered chest wall mechanics. Fine-wire electromyography (EMG) of the transversus abdominis (TA), internal oblique (IO), external oblique, and rectus abdominis was recorded in 10 MMD and 10 control subjects. EMG activity, respiratory inductive plethysmography, and gastric pressure were recorded during static pressure measurement and at increasing levels of inspiratory resistance breathing. EELV was reduced and chest wall motion was synchronous only in controls. Although the TA and IO were selectively recruited in both groups, EMG activity of the MMD group was twice that of controls at the same inspiratory pressure. In MMD subjects with mildly reduced forced vital capacity, significant differences can be seen in abdominal muscle recruitment, wall motion, work of breathing, and ventilatory parameters.  相似文献   

8.
We investigated arterial PCO2 (PaCO2) and pH (pHa) responses in ponies during 6-min periods of high-intensity treadmill exercise. Seven normal, seven carotid body-denervated (2 wk-4 yr) (CBD), and five chronic (1-2 yr) lung (hilar nerve)-denervated (HND) ponies were studied during three levels of constant load exercise (7 mph-11%, 7 mph-16%, and 7 mph-22% grade). Mean pHa for each group of ponies became alkaline in the first 60 s (between 7.45 and 7.52) (P less than 0.05) at all work loads. At 6 min pHa was at or above rest at 7 mph-11%, moderately acidic at 7 mph-16% (7.32-7.35), and markedly acidic at 7 mph-22% (7.20-7.27) for all groups of ponies. Yet with no arterial acidosis at 7 mph 11%, normal ponies decreased PaCO2 below rest (delta PaCO2) by 5.9 Torr at 90 s and 7.8 Torr by 6 min of exercise (P less than 0.05). With a progressively more acid pHa at the two higher work loads in normal ponies, delta PaCO2 was 7.3 and 7.8 Torr by 90 s and 9.9 and 11.4 Torr by 6 min, respectively (P less than 0.05). CBD ponies became more hypocapnic than the normal group at 90 s (P less than 0.01) and tended to have greater delta PaCO2 at 6 min. The delta PaCO2 responses in normal and HND ponies were not significantly different (P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Carotid body-denervated (CBD) ponies have a less than normal increase in arterial PCO2 (PaCO2) when inspired CO2 (PICO2) is increased, even when pulmonary ventilation (VE) and breathing frequency (f) are normal. We studied six tracheostomized ponies to determine whether this change 1) might be due to increased alveolar ventilation (VA) secondary to a reduction in upper airway dead space (VD) or 2) is dependent on an upper airway sensory mechanism. Three normal and three chronic CBD ponies were studied while they were breathing room air and at 14, 28, and 42 Torr PICO2. While the ponies were breathing room air, physiological VD was 483 and 255 ml during nares breathing (NBr) and tracheostomy breathing (TBr), respectively. However, at elevated PICO2, mixed expired PCO2 often exceeded PaCO2; thus we were unable to calculate physiological VD using the Bohr equation. At all PICO2 in normal ponies, PaCO2 was approximately 0.3 Torr greater during NBr than during TBr (P less than 0.05). In CBD ponies this NBr-TBr difference was only evident while breathing room air and at 28 Torr PICO2. At each elevated PICO2 during both NBr and TBr, the increase in PaCO2 above control was always less in CBD ponies than in normal ponies (P less than 0.01). The VE-PaCO2, f-PaCO2, and tidal volume-PaCO2 relationships did not differ between NBr and TBr (P greater than 0.10) nor did they differ between normal and CBD ponies (P greater than 0.10). We conclude that the attenuated increase in PaCO2 during CO2 inhalation after CBD is not due to a relative increase in VA secondary to reducing upper airway VD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   

11.
The objective was to determine the effect of moderate changes in ambient temperature (TA) on breathing and body temperature in ponies chronically exposed to a TA of 21 degrees C in the summer and 5 degrees C in the winter. Normal (n = 6) and chronic carotid body-denervated (n = 6, 1-2 yr) ponies were studied during 1) winter months over 3-4 days at 5 (control TA) and 23 degrees C and 2) summer months over 2-4 days at 21 (control TA), 30, and 12 degrees C. Neither rectal nor arterial temperature changed with any alteration of TA (P greater than 0.10). Skin temperature (Tsk) always changed by 2-4 degrees C in the same direction as changes in TA (P less than 0.01), and Tsk was the only variable that differed between summer and winter control TA. While breathing room air 24-48 h after TA was altered, pulmonary ventilation (VE) and breathing frequency (f) were approximately 100 and 300%, respectively, above control with elevated TA and approximately 25-50% below control with reduced TA (P less than 0.01). Changes in f were closely related to changes in Tsk. Tidal volume (VT) changed inversely with changes in TA. Generally, while breathing room air, arterial PCO2 (Paco2) did not change from control during the first 48 h of altered TA. In studies when inspired CO2 was elevated VT increased by the same amount at all TA; f increased at low and control TA but decreased at elevated TA; and VE and Paco2 both increased relatively less at elevated TA, but the VE-Paco2 slope was independent of TA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We assessed the consequences of respiratory unloading associated with tracheostomy breathing (TBr). Three normal and three carotid body-denervated (CBD) ponies were prepared with chronic tracheostomies that at rest reduced physiological dead space (VD) from 483 +/- 60 to 255 +/- 30 ml and lung resistance from 1.5 +/- 0.14 to 0.5 +/- 0.07 cmH2O . l-1 . s. At rest and during steady-state mild-to-heavy exercise arterial PCO2 (PaCO2) was approximately 1 Torr higher during nares breathing (NBr) than during TBr. Pulmonary ventilation and tidal volume (VT) were greater and alveolar ventilation was less during NBr than TBr. Breathing frequency (f) did not differ between NBr and TBr at rest, but f during exercise was greater during TBr than during NBr. These responses did not differ between normal and CBD ponies. We also assessed the consequences of increasing external VD (300 ml) and resistance (R, 0.3 cmH2O . l-1 . s) by breathing through a tube. At rest and during mild exercise tube breathing caused PaCO2 to transiently increase 2-3 Torr, but 3-5 min later PaCO2 usually was within 1 Torr of control. Tube breathing did not cause f to change. When external R was increased 1 cmH2O . l-1 . s by breathing through a conventional air collection system, f did not change at rest, but during exercise f was lower than during unencumbered breathing. These responses did not differ between normal, CBD, and hilar nerve-denervated ponies, and they did not differ when external VD or R were added at either the nares or tracheostomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Breathing, diaphragmatic and transversus abdominis electromyograms (EMGdi and EMGta, respectively), and arterial blood gases were studied during normoxia (arterial PO2 = 95 Torr) and 48 h of hypoxia (arterial PO2 = 40-50 Torr) in intact (n = 11) and carotid body-denervated (CBD, n = 9) awake ponies. In intact ponies, arterial PCO2 was 7, 5, 9, and 11 Torr below control (P less than 0.01) at 1 and 10 min and 5 and 24-48 h of hypoxia, respectively. In CBD ponies, arterial PCO2 was 3-4 Torr below control (P less than 0.01) at 4, 5, 6, and 24 h of hypoxia. In intact ponies, pulmonary ventilation, mean inspiratory flow rate, and rate of rise of EMGdi and EMGta changed in a multi-phasic fashion during hypoxia; each reached a maximum during the 1st h (P less than 0.05), declined between 1 and 5 h (P less than 0.05), and increased between 5 and 24-48 h of hypoxia. As a result of the increased drive to the diaphragm, the mean EMGdi was above control throughout hypoxia (P less than 0.05). In contrast, as a result of a sustained reduction in duration of the EMGta, the mean EMGta was below control for most of the hypoxic period. In CBD ponies, pulmonary ventilation and mean inspiratory flow rate did not change during chronic hypoxia (P greater than 0.10). In these ponies, the rate of rise of the EMGdi was less than control (P less than 0.05) for most of the hypoxic period, which resulted in the mean EMGdi to also be less than control (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We evaluated an index of diaphragm efficiency (Eff(di)), diaphragm power output (Wdi) relative to electrical activation, in five healthy adults during tidal breathing at usual end-expiratory lung volume (EELV) and diaphragm length (L(di ee)) and at shorter L(di ee) during hyperinflation with expiratory positive airway pressure (EPAP). Measurements were repeated with an inspiratory threshold (7.5 cmH(2)O) plus resistive (6.5 cmH(2)O.l(-1).s) load. Wdi was the product of mean inspiratory transdiaphragmatic pressure (DeltaPdi(mean)), diaphragm volume displacement measured fluoroscopically, and 1/inspiratory duration (Ti(-1)). Diaphragm activation, measured with esophageal electrodes, was quantified by computing root-mean-square values (RMS(di)). With EPAP, 1) EELV increased [mean r(2) = 0.91 (SD 0.01)]; 2) in four subjects, L(di ee) decreased [mean r(2) = 0.85 (SD 0.07)] and mean Eff(di) decreased 34% per 10% decrease in L(di ee) (P < 0.001); and 3) in one subject, gastric pressure at EELV increased two- to threefold, L(di ee) was unchanged or increased, and Eff(di) increased at two of four levels of EPAP (P < or = 0.006, ANOVA). Inspiratory loading increased Wdi (P = 0.003) and RMS(di) (P = 0.004) with no change in Eff(di) (P = 0.63) or its relationship with L(di ee). Eff(di) was more accurate in defining changes in L(di ee) [(true positives + true negatives)/total = 0.78 (SD 0.13)] than DeltaPdi(mean).RMS(di)(-1), RMS(di), or DeltaPdi(mean).Ti (all <0.7, P < or = 0.05, without load). Thus Eff(di) was principally a function of L(di ee) independent of inspiratory loading, behavior consistent with muscle force-length-velocity properties. We conclude that Eff(di), measured during tidal breathing and in the absence of expiratory muscle activity at EELV, is a valid and accurate measure of diaphragm contractile function.  相似文献   

15.
We assessed changes in respiratory muscle timing in response to hyperpnea and shortened inspiratory and expiratory times caused by chemoreceptor stimuli in six awake dogs. Durations of postinspiratory inspiratory activity of costal and crural diaphragm (PIIA), the delay in diaphragm electromyogram (EMG) after the initiation of inspiratory airflow, postexpiratory expiratory activity of the transversus abdominis (PEEA), and the delay of abdominal expiratory muscle activity after the initiation of expiratory airflow were measured. In control, four out of six dogs showed PIIA [8-10% of expiratory time (TE)]; all showed delay of diaphragm [19% of inspiratory time (TI)], delay of abdominal muscle activation (21% of TE), and PEEA (24% of TI). Hypercapnia decreased PIIA (4-9% of TE), maintained diaphragm delay at near control values (23% of TI), increased PEEA (36% of TI), eliminated delay of abdominal muscle activation (4% of TE), and decreased end-expiratory lung volume (EELV). Hypocapnic hypoxia increased PIIA (24-25% of TE), eliminated diaphragm delay (3% of TI), eliminated PEEA (3% of TI), reduced delay of abdominal muscle activation (14% of TE), and increased EELV. Most of these effects of hypoxic hypocapnia vs. hypercapnia on the within-breath EMG timing parameters corresponded to differences in the magnitude of expiratory muscle activation. These changes exerted significant influences on flow rates and EELV.  相似文献   

16.
The effect of end-expiratory occlusion on respiratory muscle activity was studied in 10 unsedated preterm infants during sleep. Electromyograms (EMG) of the upper airway were recorded from surface electrodes placed over the submental (SM) area; diaphragm (DIA) EMGs were obtained with identical electrodes over the right subcostal margin. Phasic SM EMG accompanied 56 +/- 36% of breaths during spontaneous breathing and increased to 80 +/- 26% (P less than 0.05) on the first inspiratory effort after occlusion. Occlusion increased peak amplitude (P less than 0.001) and total duration (P less than 0.005) of the SM EMG without significant changes in its initial rate of rise. In contrast, only the total duration of the DIA EMG increased (P less than 0.005) during occlusion. Inspiratory time increased from 470 +/- 120 to 720 +/- 210 ms (P less than 0.001) during the first occluded effort, but expiratory time did not change. With sustained occlusion, peak amplitude of the SM EMG progressively increased, but DIA EMG only significantly increased by the third occluded effort. Pharyngeal patency was invariably maintained throughout the induced airway occlusions. Sharp bursts of SM EMG activity coincided with resolution of spontaneous obstructive apneic episodes in four infants. The immediate increase in SM EMG associated with airway occlusion may be a mechanism that prevents the development of obstructive apnea.  相似文献   

17.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We assessed respiratory muscle response patterns to chemoreceptor stimuli (hypercapnia, hypoxia, normocapnic hypoxia, almitrine, and almitrine + CO2) in six awake dogs. Mean electromyogram (EMG) activities were measured in the crural (CR) diaphragm, triangularis sterni (TS), and transversus abdominis (TA). Hypercapnia and normocapnic hypoxia caused mild to marked hyperpnea [2-5 times control inspiratory flow (VI)] and increased activity in CR diaphragm, TS, and TA. When hypocapnia was permitted to develop during hypoxia and almitrine-induced moderate hyperpnea, CR diaphragm activity increased, whereas TS and TA activities usually did not change or were reduced below control. Over time in hypercapnia, CR diaphragm, TS, and TA were augmented and maintained at these levels over many minutes; with hypoxic hyperventilation CR diaphragm, TS, and TA were first augmented but then CR diaphragm remained augmented while TS and, less consistently, TA were inhibited over time. Marked hyperpnea (4-5 times control) due to carotid body stimulation increased TA and TS EMG activity despite an accompanying hypocapnia. We conclude that in the intact awake dog 1) carotid body stimulation augments the activity of both inspiratory and expiratory muscles; 2) hypocapnia overrides the augmenting effect of carotid body stimulation on expiratory muscles during moderate hyperpnea, usually resulting in either no change or inhibition; 3) at higher levels of hyperpnea both chemoreceptor stimulation and stimulatory effects secondary to a high ventilatory output favor expiratory muscle activation; these effects override any inhibitory effects of a coincident hypocapnia; and 4) expiratory muscles of the rib cage/abdomen may be augmented/inhibited independently of one another.  相似文献   

19.
The present study compared the responses of rib cage and abdominal expiratory muscles to chemical and mechanical stimuli. In pentobarbital-anesthetized spontaneously breathing dogs, electromyograms (EMG) were recorded from the triangularis sterni (TS) and transverse abdominis (TA) muscles using bipolar intramuscular wire electrodes. During resting oxygen breathing, both muscles were electrically active during expiration. Progressive hyperoxic hypercapnia significantly augmented the expiratory activity of both the TA and the TS. However, the mean percent increases in electrical activity in response to CO2 were substantially greater for the TA than for the TS at all PCO2 levels greater than 50 Torr (P less than 0.01). Occlusion of the airway at end inspiration significantly delayed the onset of TS EMG (from 0.35 +/- 0.07 to 3.35 +/- 0.67 sec; P less than 0.002) and decreased TS EMG rate of rise (P less than 0.002), but did not significantly alter these parameters for the TA. Esophageal distension increased TS EMG in all dogs (by mean of 220 +/- 64%; P less than 0.01), but in contrast decreased TA EMG in all dogs (by a mean of 63 +/- 12%; P less than 0.001). The response to esophageal distention occurred in a graded manner and appeared to be mediated predominantly via vagal afferents. We concluded that expiratory muscles of the rib cage and abdomen manifest substantial differences in their electrical responses to chemoreceptor, pulmonary stretch receptor, and esophageal mechanoreceptor stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Studies in mammals have found that during breathing the triangularis sterni (TS) muscle regulates expiratory airflow and the end-expiratory position of the rib cage and furthermore that the respiratory activity of this muscle is influenced by a variety of chemical and mechanical stimuli. To assess the role of the TS during coughing and sneezing, electromyograms (EMGs) recorded from the TS were compared with EMGs of the transversus abdominis (TA) in eight pentobarbital-anesthetized dogs. During coughing induced by mechanically stimulating the trachea or larynx (n = 7 dogs), peak EMGs increased from 23 +/- 2 to 74 +/- 5 U (P less than 0.00002) for the TS and from 21 +/- 6 to 66 +/- 4 U (P less than 0.0002) for the TA. During sneezing induced by mechanically stimulating the nasal mucosa (n = 3 dogs), peak EMG of the TS increased from 10 +/- 3 to 66 +/- 7 U (P less than 0.005) and peak EMG of the TA increased from 10 +/- 2 to 73 +/- 7 U (P less than 0.02). For both muscles the shape of the EMG changed to an early peaking form during coughs and sneezes. Peak expiratory airflow during coughs of different intensity correlated more closely with peak TS EMG in three dogs and with peak TA EMG in four dogs; peak expiratory airflow during sneezes of different intensity correlated more closely with peak TS than TA EMG in all three animals. These results suggest that the TS is actively recruited during coughing and sneezing and that different neuromuscular strategies may be utilized to augment expiratory airflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号