首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Germination of Potentilla norvegica L. (rough cinquefoil) seeds stimulated by fluorescent irradiations of nearly 24 hours was inhibited by ethylene at <1 microliter per liter. Sensitivity to ethylene inhibition was highest during and immediately after the irradiation. By delaying ethylene treatment until about a day after the light potentiation, seeds escaped the inhibition. Ethylene inhibition may be readily reversed upon release of the gas and reirradiation of the seeds. Imbibition of seeds at 10 or 15°C, or at high temperatures of 35 and 40°C, partially prevented subsequent inhibition by ethylene. Alternating temperatures during germination nearly overcame the inhibition from 1 microliter per liter ethylene, but not higher doses. With brief red-irradiation and alternating temperatures, 0.1 microliter per liter ethylene promoted germination about 2-fold. These data suggest that ethylene may loosely associate on a site required for phytochrome action. The effect of temperature that opposed the inhibition may be to deny the association of ethylene with the site. Loose association is supported by the reversal of inhibition by gas release and increased temperature during germination. A blocking effect was shown by the failure of phytochrome to act when ethylene was present.  相似文献   

2.
Interrelations between CO2 and C2H4 on promotion of seed germination were examined in more detail at 23°C with presoaked upper seeds of Xanthium pennsylvanicum Wallr. The germination-promoting effect of C2H4 decreased gradually as its application time was delayed during a soaking period, whereas CO2 was most promotive in application at 5 days of soaking, then its effect declined. CO2 and C2H4 were additive in earlier soaking periods and synergistic in later periods. Such changes in germination behavior in response to CO2 and/or C2H4 during a soaking period were closely associated with growth responsiveness of the axial tissues, but not of the cotyledonary ones. Growth responsiveness of axial tissues to CO2 or C2H4 disappeared finally during a soaking period, but their extinct responsiveness to any one of these gases was almost fully restored in the simultaneous presence of the other. The extinct responsiveness to CO2 was partially recovered by a preexposure to C2H4. This suggests that in the later period of soaking, unlike the case in a very early period of soaking, the C2H4-sensitive phase for seed germination precedes the CO2-sensitive phase in which CO2 potentiated axial growth. The restoration of CO2 responsiveness in axial growth occurred not only after C2H4 treatment but also after exposure to 8 or 33°C or after KCN treatment. Thus, secondarily dormant Xanthium seeds could germinate in response to CO2 alone, when they were previously exposed for shortterms not only to C2H4 but also 8°C, 33°C, or KCN.  相似文献   

3.
Both red light (10 minutes) and 35°C treatment (60 minutes) stimulate the germination of seeds of Rumex obtusifolius otherwise maintained in darkness at 25°C. Fluence response curves were determined for the effect of red light to stimulate germination of seeds with and without 35°C treatment. The endogenous far-red absorbing form (Pfr) level in the seeds was determined using short saturating fluences of wavelengths of light which maintain different proportions of phytochrome as Pfr at equilibrium. In the seed batches investigated, the endogenous Pfr level was found to be 4% or less of the total phytochrome. High dark germination after 35°C treatment does not result from an increase in sensitivity of the whole population to Pfr. Calculated fluence response curves for germination which best fit the experimental data suggest that seeds germinate in darkness after 35°C treatment because of a nonphytochrome-related process (overriding factor).  相似文献   

4.
Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.  相似文献   

5.
General characteristics of light-induced germination of Oenothera biennis L. seeds were investigated at 24°C. During dark imbibition, seeds reached maximal respiration in 7 hours and maximal water content and photosensitivity in 24 hours. After dark imbibition of 24 hours, seeds required a long exposure (>36 hours) to red or white light for maximal germination. Two photoperiods (12 and 2 hours) separated by a period of darkness of 10 to 16 hours gave near maximal germination. For the two photoperiod regime, the first light potentiates a reversible phytochrome response by the second light. A 35°C treatment for 2 to 3 hours in the dark immediately prior or subsequent to 8 hours of light caused a higher percentage of germination. A 2 hour treatment at 35°C also potentiates a reversible phytochrome response. Halved seeds germinated at 100% in light or darkness indicating that the light requirement of the seeds is lost in the halving procedure. After-ripened seeds required less light and germinated more rapidly and at higher percentages than seeds tested shortly after maturation.  相似文献   

6.
Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.  相似文献   

7.
Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25°C, but not at 15°C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15°C and 25°C.

The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25°C than at 15°C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15°C and 25°C after the puncture force was reduced to between 0.3 and 0.4 newtons.

Application of gibberellic acid4+7 (100 microliters per liter) resulted in earlier germination at 15°C and 25°C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O2 concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid4+7, but only at 25°C. At 15°C, high O2 concentrations slowed germination and endosperm strength decline.

  相似文献   

8.
Two successive phases can be distinguished in the development of the responsiveness to light in Oldenlandia corymbosa L. seeds during their incubation in darkness. During phase I, the responsiveness to light increases with time if there is sufficient O2, and the higher the temperature, the faster the increase. This phase is stimulated by gibberellic acid. During the following phase (II), seeds remain responsive to light at 10 or 20°C, but lose their responsiveness at higher temperature (≥30°C). This second phase depends on O2: loss of responsiveness is accelerated at lower O2 concentration. Phase II is only slightly affected by gibberellic acid. The results are discussed in terms of variation of phytochrome and of a reaction along the transduction chain initiated by phototransformation of this pigment, which is finally expressed in germination.  相似文献   

9.
Two brief red (R) irradiations, separated by 24 hours, given to Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds, made secondarily dormant by a prolonged dark incubation period on water and transferred to GA3, induce very low germination. Some effect of these irradiations is preserved, however, during a long dark interval in fully imbibed seeds and greatly increases the germination induced by another brief R exposure. This long-lasting light effect is, at 20°C, only lost after a dark interval of about 1 month. It can also be induced by two brief far-red (FR) exposures. Its preservation is temperature-dependent, low temperatures being favorable. Light-induced changes in the ATP-content were demonstrated during preservation and expression of the long-lasting light effect, indicating a long-lasting metabolic change. In seeds with primary dormancy sown on GA3, an analogous long-lasting light effect is induced by one or two brief R or FR irradiations, even when they are given before germination can take place. The presence of GA3, which was shown to induce a very low fluence germination response in Kalanchoë seeds, is required for the occurrence of the long-lasting light effect. The data suggest long-term preservation of some effect(s) of Pfr rather than persistent presence of Pfr itself.  相似文献   

10.
Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to ≥ 0.3 molar 2-propanol during a 2-day 20°C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10°C instead of 20°C, or may be overcome by transferring ethanol-pretreated seeds to 10°C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40°C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting.  相似文献   

11.
Factors controlling the establishment and removal of secondary dormancy in Chenopodium bonus-henricus L. seeds were investigated. Unchilled seeds required light for germination. A moist-chilling treatment at 4 C for 28 to 30 days removed this primary dormancy. Chilled seeds now germinated in the dark. When chilled seeds were held in the dark in −8.6 bars polyethylene glycol 6000 solution at 15 C or in water at 29 C a secondary dormancy was induced which increased progressively with time as determined by subsequent germination. These seeds now failed to germinate under the condition (darkness) which previously allowed their germination. Continuous light or daily brief red light irradiations during prolonged imbibition in polyethylene glycol solution at 15 C or in water at 29 C prevented the establishment of the secondary dormancy and caused an advancement of subsequent germination. Far red irradiations immediately following red irradiation reestablished the secondary dormancy indicating phytochrome participation in “pregerminative” processes. The growth regulator combination, kinetin + ethephon + gibberellin A4+A7 (GA4+7), and to a relatively lesser extent GA4+7, was effective in preventing the establishment of the secondary dormancy and in advancing the germination or emergence time. Following the establishment of the secondary dormancy by osmotic or high temperature treatments the regulator combination was relatively more active than light or GA4+7 in removing the dormancy. Prolonged dark treatment at 29 C seemed to induce changes that were partially independent of light or GA4+7 control. The data presented here indicate that changes during germination preventing dark treatment determine whether the seed will germinate, show an advancement effect, or will become secondarily dormant. These changes appear to be modulated by light and hormones.  相似文献   

12.
Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (~73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response.  相似文献   

13.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

14.
Lettuce (Lactuca sativa L. cv Minetto) seeds were primed in aerated solutions of 1% K3PO4 or water at 15°C in the dark for various periods of time to determine the manner by which seed priming bypasses thermodormancy. Seeds which were not primed did not germinate at 35°C, whereas those which were primed for 20 h in 1% K3PO4 or distilled H2O had up to 86% germination. The rate of water uptake and respiration during priming were similar regardless of soak solution. Cell elongation occurred in both water and 1% K3PO4, 4 to 6 h prior to cell division. Both processes commenced sooner in water than K3PO4. Radicle protrusion (germination) occurred in the priming solution at 21 h in water and 27 h in 1% K3PO4.

Respiration, radicle protrusion and cell division consistently occurred sooner in primed (redried) seeds compared to nonprimed seeds when they were imbibed at 25°C. Cell division and elongation commenced after 10 h imbibition in primed (redried) seeds imbibed at 35°C. Neither process occurred in nonprimed seeds. Respiratory rates were higher in both primed and nonprimed seeds imbibed at 35°C compared to those imbibed at 25°C, although radicle protrusion did not occur in nonprimed seeds which were imbibed at 35°C. It is apparent that cell elongation and division are inhibited during high temperature imbibition in nonprimed lettuce seeds. Seed priming appears to lead to the irreversible initiation of cell elongation, thus overcoming thermodormancy.

  相似文献   

15.
Khan AA  Zeng GW 《Plant physiology》1985,77(4):817-823
`Grand Rapids' lettuce Lactuca sativa L. seeds germinate readily at 15°C but poorly at 25°C in darkness. When held in dark at 25°C for an extended period, the ungerminated seeds become dormant as shown by their inability to germinate or transfer to 15°C in darkness. Induction of dormancy at 25°C was prevented by exposure to CN, azide, salicylhydroxamic acid (SHAM), dinitrophenol, and pure N2 as determined by subsequent germination at 15°C on removal of inhibitors. The effectiveness of inhibitors to break dormancy declined as dormancy intensified. At relatively low levels, CN, SHAM, and azide promoted dark germination at 25°C while at high levels they were inhibitory. Uptake of O2 by seeds held at 25°C for 4 days in 1.0 millimolar KCN was inhibited by 67% but was promoted 61% when KCN was removed. Correspondingly greater inhibition (79%) and promotion (148%) occurred when 1.0 millimolar SHAM was added to KCN solution. When applied alone, SHAM had little effect on O2 uptake. These data indicate that Cyt pathway of respiration plays a dominant role in the control of both dormancy induction and germination of lettuce seeds, and `alternative pathway' is effectively engaged in presence of CN. The channeling of respiratory energy use for processes governing germination or dormancy is subject to control by physical and chemical factors.

A scheme is proposed that illustrates compensatory use of energy for processes controlling dormancy induction and germination. A block of germination, e.g. by low water potential polyethylene glycol solution or a supraoptimal temperature spares energy to be utilized for dormancy induction while a block of dormancy induction by low levels of CN (similar to GA and light effects) drives germination. Blocking both processes by inhibitors (e.g. CN, CN + SHAM) presumably leads to accumulation of `reducing power' with consequent improvement in O2 uptake and oxidation rates of processes controlling germination or dormancy induction upon removal of the inhibitors.

  相似文献   

16.

Background and Aims

Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia.

Methods

Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures.

Key Results

Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations.

Conclusions

Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.  相似文献   

17.
Application of exogenous ethylene in combination with gibberellic acid (GA3), kinetin (KIN), and/or CO2 has been reported to induce germination of lettuce seeds at supraoptimal temperatures. However, it is not clear whether endogenous ethylene also plays a mediatory role when germination under these conditions is induced by treatment regimes that do not include ethylene. Therefore, possible involvement of endogenous ethylene during the relief of thermoinhibition of lettuce (Lactuca sativa L. cv Grand Rapids) seed germination at 32°C was investigated. Combinations of GA3 (0.5 millimolar), KIN (0.05 millimolar), and CO2 (10%) were used to induce germination. Little germination occurred in controls or upon treatment with ethylene, KIN, or CO2. Neither KIN nor CO2 affected the rate of ethylene production by seeds. Both germination and ethylene production were slightly promoted by GA3. Treatments with GA3+CO2, GA3+KIN, or GA3+CO2+KIN resulted in approximately 10-to 40-fold increases in ethylene production and 50 to 100% promotion of germination as compared to controls. Initial ethylene evolution from the treated seeds was greater than from the controls and a major surge in ethylene evolution occurred at the time of visible germination. Application of 1 millimolar 2-aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene synthesis, in combination with any of above three treatments inhibited the ethylene production to below control levels. This was accompanied by a marked decline in germination percentage. Germination was also inhibited by 2,5-norbornadiene (0.25-2 milliliters per liter), a competitive inhibitor of ethylene action. Application of exogenous ethylene (1-100 microliters per liter) overcame the inhibitory effects of AVG and 2,5-norbornadiene on germination. The results demonstrate that endogenous ethylene synthesis and action are essential for the alleviation of thermoinhibition of lettuce seeds by combinations of GA3, KIN, and CO2. It also appears that these treatment combinations do not act exclusively via promotion of ethylene evolution as the application of exogenous ethylene alone did not promote germination.  相似文献   

18.
Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha-1 was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.  相似文献   

19.
Germination of lettuce seeds has obvious thermoinhibition, but the mechanism for thermoinhibition of seed germination is poorly understood. Here, we investigated the interactions of nitrate, abscisic acid (ABA) and gibberellin on seed germination at high temperatures to understand further the mechanism for thermoinhibition of seed germination. Our results showed that lettuce (Lactuca sativa L. ‘Jianye Xianfeng No. 1’) seeds exhibited notable thermoinhibiton of germination at ≥17°C in darkness, and at ≥23°C in light, but the thermoinhibited seeds did not exhibit secondary dormancy. Thermoinhibition of seed germination at 23 or 25°C in light was notably decreased by 5 and 10 mM nitrate, and the stimulatory effects were markedly prevented by nitric oxide (NO) scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The sensitivity of seed germination to exogenous ABA increased with increasing temperature. Thermoinhibition of seed germination was markedly decreased by fluridone (an inhibitor of ABA biosynthesis) and GA3, and was increased by diniconazole (an inhibitor of the ABA-catabolizing enzyme ABA 8′-hydroxylase) and paclobutrazol (an inhibitor of GA biosynthetic pathway). The effect of fluridone in decreasing thermoinhibition of seed germination was obviously antagonized by paclobutrazol, and that of GA3 was notably added to by fluridone, and that of nitrate was antagonized by paclobutrazol, diniconazole and ABA and was added to by GA3 and fluridone. Our data show that thermoinhibition of lettuce seed germination is decreased by nitrate in a NO-dependent manner, which is antagonized by ABA, diniconazole and paclobutrazol and added by fluridone.  相似文献   

20.
The thermoinhibition at 35 and 32°C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35°C was inhibited by Co2+ (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35°C were lost. At 35°C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25°C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号