首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Background:Chronic lymphocytic leukemia (CLL) is one of the most prevalent forms of leukemia in adults. Inactivation of the DLEU7 gene is frequently observed in patients with CLL. Furthermore, microRNAs (miRNAs) have been observed to have a critical role in the pathogenesis of several cancers, including leukemia. Considering the tumor-suppressive role of DLEU7, as well as the tumor suppressor or oncogenic role of microRNAs (miRNAs), the aim of the present study was to evaluate the potential miRNAs targeting the DLEU7 gene in B-cells and explore expression changes these genes in the plasma of B-CLL patients. Methods:The miRNAs interacting with the DLEU7 gene were predicted and selected using bioinformatics tools. A total of 80 plasma samples were collected from 40 patients with B-cells and 40 healthy individuals, then subjected to RNA extraction and cDNA synthesis. The expression profiles of the predicted miRNAs and the DLEU7 gene in the plasma of B-CLL patients and healthy individuals were determined by RT-qPCR analysis. Results:The bioinformatics prediction indicated that miR-15b and miR-195 target the DLEU7 gene. The expression levels of miR-15b and miR-195 were significantly higher in the plasma of patients with B-CLL compared to the healthy individuals (91.6, p= 0.001) (169, p= 0.001). However, the expression level of the DLEU7 gene was found to be significantly lower in the patient group compared to healthy controls (0.304, p= 0.001).Conclusion:Both miR-15b and miR-195, have the potential to function as novel and non-invasive biomarkers in the diagnosis and prognosis of patients with B-CLL.Key Words: B-CLL, miRNA, Biomarker, DLEU7, RT-QPCR  相似文献   

2.
B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia. The most common chromosomal abnormalities detectable by cytogenetics include deletion at 13q (55%), 11q (18%), trisomy 12 (12–16%) and 17p (8%). In 2002, we discovered that a microRNA cluster miR-15a/miR-16-1 (miR-15/16) is the target of 13q deletions in CLL. MicroRNAs encoded by the miR-15/16 locus (miR-15 and miR-16) function as tumor suppressors. Expression of these miRNAs downregulated in CLL, melanoma, colorectal cancer, bladder cancer and other solid tumors. miR-15/16 cluster targets multiple oncogenes, including BCL2, Cyclin D1, MCL1 and others. The most important target of miR-15/16 in CLL is arguably BCL2, as BCL2 is overexpressed in almost all CLLs. In this review, we discuss the discovery, functions, clinical relevance and treatment opportunities related to miR-15/16.  相似文献   

3.
4.
5.
Critical processes of B-cell physiology, including immune signaling through the B-cell receptor (BcR) and/or Toll-like receptors (TLRs), are targeted by microRNAs. With this in mind and also given the important role of BcR and TLR signaling and microRNAs in chronic lymphocytic leukemia (CLL), we investigated whether microRNAs could be implicated in shaping the behavior of CLL clones with distinct BcR and TLR molecular and functional profiles. To this end, we examined 79 CLL cases for the expression of 33 microRNAs, selected on the following criteria: (a) deregulated in CLL versus normal B-cells; (b) differentially expressed in CLL subgroups with distinct clinicobiological features; and, (c) if meeting (a) + (b), having predicted targets in the immune signaling pathways. Significant upregulation of miR-150, miR-29c, miR-143 and miR-223 and downregulation of miR-15a was found in mutated versus unmutated CLL, with miR-15a showing the highest fold difference. Comparison of two major subsets with distinct stereotyped BcRs and signaling signatures, namely subset 1 [IGHV1/5/7-IGKV1(D)-39, unmutated, bad prognosis] versus subset 4 [IGHV4-34/IGKV2-30, mutated, good prognosis] revealed differences in the expression of miR-150, miR-29b, miR-29c and miR-101, all down-regulated in subset 1. We were also able to link these distinct microRNA profiles with cellular phenotypes, importantly showing that, in subset 1, miR-101 downregulation is associated with overexpression of the enhancer of zeste homolog 2 (EZH2) protein, which has been associated with clinical aggressiveness in other B-cell lymphomas. In conclusion, specific miRNAs differentially expressed among CLL subgroups with distinct BcR and/or TLR signaling may modulate the biological and clinical behavior of the CLL clones.  相似文献   

6.
7.
目的:使用microRNAs基因芯片及实时定量PCR法测定骨肉瘤组织中miR-15a-5p和miR-16-5p的相对表达含量,并与瘤旁组织对比,分析骨肉瘤细胞内miR-15a-5p和miR-16-5p的表达变化。方法:选取34例骨肉瘤组织蜡块样本,使用microRNAs基因芯片观察miR-15a-5p和miR-16-5p在骨肉瘤和瘤旁组织内的表达差异;实时定量PCR法测定骨肉瘤组织和瘤旁组织中miR-15a-5p和miR-16-5p的相对表达含量,并将两种结果对比分析。结果:microRNAs基因芯片结果显示,在骨肉瘤组织中,miR-15a-5p在肿瘤中的表达较瘤旁组织低1.79倍,miR-16-5p较瘤旁组织低1.62倍。实时定量PCR实验结果表明,miR-15a-5p和miR-16-5p表达较瘤旁组织降低,差异有统计学意义(P0.05)。经过统计学计算,miR-15a-5p在肿瘤中的表达较瘤旁组织低3.14倍,miR-16-5p较瘤旁组织低5.65倍。结论:在骨肉瘤中,miR-15a-5p和miR-16-5p表达含量降低,提示这两种microRNAs在骨肉瘤中可能做为抑癌因子存在。  相似文献   

8.
曹烨  孙志卫  梁拓  刘静 《生命科学》2012,(7):660-665
近年来的研究表明microRNAs表达异常直接或间接导致了多种亚型慢性淋巴细胞白血病(chronic lymphocytic leukemia,CLL)的发生。miR-34家族(包括miR-34a、miR-34b与miR-34c)是一个与细胞增殖、分化和癌变高度相关的microRNA家族。近年来,人们发现miR-34家族在p53调控网络和CLL发生中起着重要作用,并具有显著的临床应用价值。将对miR-34家族在慢性淋巴细胞白血病发生中的作用和机制做一综述。  相似文献   

9.
MiR-15a/16-1 and miR-15b/16-2 clusters have been shown to play very important roles in regulating cell proliferation and apoptosis by targeting cell cycle proteins and the antiapoptotic Bcl-2 gene. However, the physiological implications of those two clusters are largely elusive. By aligning the primary miR-15a/16-1 sequence among 44 vertebrates, we found that there was a gap in the homologous region of the rat genome. To verify that there was a similar miR-15a/16-1 cluster in rats, we amplified this region from rat genomic DNA using PCR and found that a 697-bp sequence was missing in the current rat genome database, which covers the miR-15a/16-1 cluster. Subsequently, we also investigated the expression pattern of individual miRNAs spliced from miR-15a/16-1 and miR-15b/16-2 clusters, including miR-15a, miR-15a*, miR-15b, miR-15b*, miR-16-1/2, and miR-16-1/2* from various rat tissues, and found that all of those miRNAs were expressed in the investigated tissues. MiR-16 was most expressed in the heart, followed by the brain, lung, kidney, and small intestine, which indicates tissue specificity for individual miRNA expression from both clusters. Our results demonstrated that both miR-15a/16-1 and miR-15b/16-2 clusters are highly conserved among mammalian species. The investigation of the biological functions of those two clusters using transgenic or knockout/knockdown models will provide new clues to understanding their implications in human diseases and finding a new approach for miRNA-based therapy.  相似文献   

10.
New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3'' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development. Using PCR and in vitro microRNA processing assays, we found that the NZB sequence alterations in the mir-15a/16-1 loci result in deficient processing of the precursor forms of miR-15a/16-1, in particular, we observe impaired conversion of pri-miR-15a/16-1 to pre-miR-15a/16-1. The in vitro data was further supported by derivation of congenic strains with replaced mir-15a/16-1 loci at one or both alleles: NZB congenic mice (NmiR+/-) and DBA congenic mice (DmiR-/-). The level of miR-15a/16-1 reflected the configuration of the mir-15a/16-1 loci with DBA congenic mice (DmiR-/-) showing reduced miR-15a levels compared to homozygous wild-type allele, while the NZB congenic mice (NmiR+/-) showed an increase in miR-15a levels relative to homozygous mutant allele. Similar to Monoclonal B-cell Lymphocytosis (MBL), the precursor stage of the human disease, an overall expansion of the B-1 population was observed in DBA congenic mice (DmiR-/-) relative to wild-type (DmiR+/+). These studies support our hypothesis that the mutations in the mir-15a/16-1 loci are responsible for decreased expression of this regulatory microRNA leading to B-1 expansion and CLL development.  相似文献   

11.
目的:分析在荧光原位杂交技术慢性淋巴细胞白血病遗传学异常检测中的应用,并分析相关指标在评价患者预后中的应用。方法:对我院收治的45例初诊CLL患者采用荧光原位杂交技术进行特异性探针D13S25(13q14.3)、RB1(13q14)、p53(17p13)、ATM(11q22.3)、以及CSP12(12号染色体3体)染色体标本检测,分析CLL患者遗传学异常的发生率。采用实时定量PCR检测miR-15a和miR-16-1与CLL患者遗传学异常的相关性。结果:45例CLL初诊患者中,荧光原位检测发现CLL遗传学异常37例,CLL遗传学异常率82.22%。其中d(13q14.3)遗传异常13例,d(13q14)遗传异常7例,d(11q22-23)遗传异常6例,d(17p13)遗传异常5例,12号染色体三体异常6例,遗传学异常多呈异质性。实时定量PCR检测发现miR-15a和miR-16-1与d(13q14)遗传异常显著相关。结论:荧光原位杂交技术是一种检测CLL遗传学异常的快速、灵敏方法,可以提高CLL遗传异常检出率。miR-15a和miR-16-1可以预测d(13q14)遗传异常CLL患者预后。  相似文献   

12.
Chronic myeloid leukemia (CML) occurs due to t(9,22) (q34;q11) and molecularly BCR/ABL gene fusion. About 15–18% Philadelphia positive CML patients have gene deletions around the translocation breakpoints on 9q34.1. The microRNAs (miRNAs), namely miR-219-2 and miR-199b, centromeric to the ABL1 gene are frequently lost in CML patients. We have designed a study to determine miR-219-2 and miR-199b expression levels which would help to understand the prognosis of imatinib therapy. A total of 150 CML patients were analyzed to identify 9q deletion. Fluorescent in-situ hybridization (FISH) was performed using BCR/ABL dual color, dual fusion probe to study the signal pattern and BAC probes for miR-199b and miR-219-2 (RP11-339B21 and RP11-395P17) to study the miRNA deletions. The expression level of miRNA was analyzed by real-time polymerase chain reaction (RT-PCR). FISH analysis revealed 9q34.1 deletion in 34 (23%) CML patients. The deletions were not detected using BAC probes for miRNAs in 9q deleted patients. The expression analysis showed down-regulation of miR-199b and miR-219-2 in the 9q deleted patients (34 CML) as compared to a pool of patients without deletion. However, miR-199b (9q34.11) was significantly (p = 0.001) down-regulated compared to miR-219-2. The follow-up study showed that the miR-199b was found to be strongly associated with imatinib resistance, as 44.11% patients showed resistance to imatinib therapy. Hence, the deletion in 9q34.1 region (ABL) plays an important role in disease pathogenesis. Eventually, miRNAs can provide new therapeutic strategies and can be used as a prognostic indicator.  相似文献   

13.
A commonly deleted region in chronic lymphocytic leukemia (CLL) is the 11q22–23 region, which encompasses the ATM gene. Evidence suggests that tumor suppressor genes other than ATM are likely to be involved in CLL with del(11q). A microRNA (miR) cluster including the miR-34b and miR-34c genes is located, among other genes, within the commonly deleted region (CDR) at 11q. Interestingly, these miRs are part of the TP53 network and have been shown to be epigenetically regulated. In this study, we investigated the expression and methylation status of these miRs in a well-characterized cohort of CLL, including cases with/without 11q-deletion. We show that the miR-34b/c promoter was aberrantly hypermethylated in a large proportion of CLL cases (48%, 25/52 cases). miR-34b/c expression correlated inversely to DNA methylation (P = 0.003), and presence of high H3K37me3 further suppressed expression regardless of methylation status. Furthermore, increased miR-34b/c methylation inversely correlated with the presence of 11q-deletion, indicating that methylation and del(11q) independently silence these miRs. Finally, 5-azacytidine and trichostatin A exposure synergistically increased the expression of miR-34b/c in CLL cells, and transfection of miR-34b or miR-34c into HG3 CLL cells significantly increased apoptosis. Altogether, our novel data suggest that miR-34b/c is a candidate tumor suppressor that is epigenetically silenced in CLL.  相似文献   

14.
15.
The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs' 5′ end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a “superfamily”) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs' 5′ seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike.  相似文献   

16.
17.
18.

Prostate cancer is the leading cause of death among men worldwide. Deregulation of microRNAs has been reported in many cancers. Expression of microRNAs miR-20a-5p, miR-21-5p, miR-100-5p, miR-125a-5p and miR-146a-5p in tissue blocks of histologically confirmed prostate cancer patients compared with BPH patients, to identify potential microRNA biomarker for prostate cancer. MicroRNA was isolated and expression was quantified by qRT-PCR using Taqman Advanced microRNA assay kits. The interactions between the microRNA:target mRNA were predicted by using bioinformatics tools such as miRwalk and miRTargetlink. The experimentally validated targets were analysed using gprofiler to identify their molecular function, biological process and related pathways. The expression analysis revealed that miR-21 and miR-100 were significantly down-regulated whereas miR-125a was up-regulated in prostate cancer patients. Comparative analysis of the expression levels with tumor grading reveal that miR-100 was significantly down-regulated (p?<?0.05) in high grade tumor, indicating that miR-100 associated with prostate cancer. ROC analysis revealed that combined analysis of down-regulated miRNAs (miR-21 and miR-100) shown AUC of 0.72 (95% CI 0.65–0.79). The combined analysis of all five miRNAs showed AUC of 0.87 (95% CI 0.81–0.92). The targets prediction analysis revealed several validated targets including BCL2, ROCK1, EGFR, PTEN, MTOR, NAIF1 and VEGFA. Our results provide evidence that combined analysis of all the five miRNAs as a panel can significantly improve the prediction level of the presence of prostate cancer and may be used as a potential diagnostic biomarker.

  相似文献   

19.
Chronic lymphocytic leukemia (CLL) has an incidence 4/100 000 people in the western world and is one of the first cancers reported to be associated with deregulated miRNA expression. microRNAs are small non coding RNAs that are important regulators of protein expression through binding to their untranslated 3'-UTR region. The miR-34 family was demonstrated to be induced by the tumor suppressor p53 and to elicit p53-like responses like senescence, cell cycle arrest and apoptosis depending on the cell type. We have shown in a recent paper that miR-34a is severely increased in the TCL1-mouse model of CLL. This finding was reflected in human CLL. Moreover, it is demonstrated that its expression is dependent on the presence of the SNP309 in the intronic promoter of the MDM2 gene. In addition, low miR-34a expression was associated with shorter time to treatment (log-rank P = 0.003) in CLL. When reintroduced into CLL cells, miR-34a was able to induce apoptosis. Interestingly, this was dependent on an intact p53 pathway. Here, we present data showing that knockdown of p53 in HCT-116 cells severely reduces miR-34a induced apoptosis. In conclusion, miR-34a is proposed as a marker for the activity of the p53 pathway in CLL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号