首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

2.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

3.
Herpesvirus saimiri (HVS) is a lymphotropic virus that causes T-cell lymphomas in New World primates. It encodes a structural homolog of complement control proteins named complement control protein homolog (CCPH). Previously, CCPH has been shown to inhibit C3d deposition on target cells exposed to complement. Here we have studied the mechanism by which it inactivates complement. We have expressed the soluble form of CCPH in Escherichia coli, purified to homogeneity and compared its activity to vaccinia virus complement control protein (VCP) and human complement regulators factor H and soluble complement receptor 1. The expressed soluble form of CCPH bound to C3b (KD = 19.2 microm) as well as to C4b (KD = 0.8 microm) and accelerated the decay of the classical/lectin as well as alternative pathway C3-convertases. In addition, it also served as factor I cofactor and supported factor I-mediated inactivation of both C3b and C4b. Time course analysis indicated that although its rate of inactivation of C4b is comparable with VCP, it is 14-fold more potent than VCP in inactivating C3b. Site-directed mutagenesis revealed that Arg-118, which corresponds to Lys-120 of variola virus complement regulator SPICE (a residue critical for its enhanced C3b cofactor activity), contributes significantly in enhancing this activity. Thus, our data indicate that HVS encodes a potent complement inhibitor that allows HVS to evade the host complement attack.  相似文献   

4.
Focused complement activation on foreign targets depends on regulatory proteins that decay the bimolecular C3 convertases. Although this process is central to complement control, how the convertases engage and disassemble is not established. The second and third complement control protein (CCP) modules of the cell surface regulator, decay-accelerating factor (DAF, CD55), comprise the simplest structure mediating this activity. Positioning the functional effects of 31 substitution mutants of DAF CCP2 to -4 on partial structures was previously reported. In light of the high resolution crystal structure of the DAF four-CCP functional region, we now reexamine the effects of these and 40 additional mutations. Moreover, we map six monoclonal antibody epitopes and overlap their effects with those of the amino acid substitutions. The data indicate that the interaction of DAF with the convertases is mediated predominantly by two patches approximately 13 A apart, one centered around Arg69 and Arg96 on CCP2 and the other around Phe148 and Leu171 on CCP3. These patches on the same face of the adjacent modules bracket an intermodular linker of critical length (16 A.) Although the key DAF residues in these patches are present or there are conservative substitutions in all other C3 convertase regulators that mediate decay acceleration and/or provide factor I-cofactor activity, the linker region is highly conserved only in the former. Intra-CCP regions also differ. Linker region comparisons suggest that the active CCPs of the decay accelerators are extended, whereas those of the cofactors are tilted. Intra-CCP comparisons suggest that the two classes of regulators bind different regions on their respective ligands.  相似文献   

5.
The cleavage of C3 by the C3 convertases (C3bBb and C4b2a) determines whether complement activation proceeds. Dissociation (decay acceleration) of these central enzymes by the regulators decay-accelerating factor (DAF), complement receptor 1 (CR1), factor H, and C4-binding protein (C4BP) controls their function. In a previous investigation, we obtained evidence implicating the alpha4/5 region of the type A domain of Bb (especially Tyr338) in decay acceleration of C3bBb and proposed this site as a potential interaction point with DAF and long homologous repeat A of CR1. Because portions of only two DAF complement control protein domains (CCPs), CCP2 and CCP3, are necessary to mediate its decay of the CP C3 convertase (as opposed to portions of at least three CCPs in all other cases, e.g. CCPs 1-3 of CR1), DAF/C4b2a provides the simplest structural model for this reaction. Therefore, we examined the importance of the C2 alpha4/5 site on decay acceleration of C4b2a. Functional C4b2a complexes made with the C2 Y327A mutant, the C2 homolog to factor B Y338A, were highly resistant to DAF, C4BP, and long homologous repeat A of CR1, whereas C2 substitutions in two nearby residues (N324A and L328A) resulted in partial resistance. Our new findings indicate that the alpha4/5 region of C2a is critical to decay acceleration mediated by DAF, C4BP, and CR1 and suggest that decay acceleration of C4b2a and C3bBb requires interaction of the convertase alpha4/5 region with a CCP2/CCP3 site of DAF or structurally homologous sites of CR1 and C4BP.  相似文献   

6.
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ~12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease.  相似文献   

7.
Kaposi's sarcoma-associated herpesvirus (KSHV) is closely associated with Kaposi's sarcoma and certain B-cell lymphomas. The fourth open reading frame of the KSHV genome encodes a protein (KSHV complement control protein (KCP, previously termed ORF4)) predicted to have complement-regulating activity. Here, we show that soluble KCP strongly enhanced the decay of classical C3-convertase but not the alternative pathway C3-convertase, when compared with the host complement regulators: factor H, C4b-binding protein, and decay-accelerating factor. The equilibrium affinity constant (KD) of KCP for C3b and C4b was determined by surface plasmon resonance analysis to range between 0.47-10 microM and 0.025-6.1 microM, respectively, depending on NaCl concentration and cation presence. Soluble and cell-associated KCP acted as a cofactor for factor I (FI)-mediated cleavage of both C4b and C3b and induced the cleavage products C4d and iC3b, respectively. In the presence of KCP, FI further cleaved iC3b to C3d, which has never been described before as complement receptor 1 only mediates the production of C3dg by FI. KCP would enhance virus pathogenesis through evading complement attack, opsonization, and anaphylaxis but may also aid in targeting KSHV to one of its host reservoirs since C3d is a ligand for complement receptor 2 on B-cells.  相似文献   

8.
Characterization of the active sites in decay-accelerating factor   总被引:3,自引:0,他引:3  
Decay-accelerating factor (DAF) is a complement regulator that dissociates autologous C3 convertases, which assemble on self cell surfaces. Its activity resides in the last three of its four complement control protein repeats (CCP2-4). Previous modeling on the nuclear magnetic resonance structure of CCP15-16 in the serum C3 convertase regulator factor H proposed a positively charged surface area on CCP2 extending into CCP3, and hydrophobic moieties between CCPs 2 and 3 as being primary convertase-interactive sites. To map the residues providing for the activity of DAF, we analyzed the functions of 31 primarily alanine substitution mutants based in part on this model. Replacing R69, R96, R100, and K127 in the positively charged CCP2-3 groove or hydrophobic F148 and L171 in CCP3 markedly impaired the function of DAF in both activation pathways. Significantly, mutations of K126 and F169 and of R206 and R212 in downstream CCP4 selectively reduced alternative pathway activity without affecting classical pathway activity. Rhesus macaque DAF has all the above human critical residues except for F169, which is an L, and its CCPs exhibited full activity against the human classical pathway C3 convertase. The recombinants whose function was preferentially impaired against the alternative pathway C3bBb compared with the classical pathway C4b2a were tested in classical pathway C5 convertase (C4b2a3b) assays. The effects on C4b2a and C4b2a3b were comparable, indicating that DAF functions similarly on the two enzymes. When CCP2-3 of DAF were oriented according to the crystal structure of CCP1-2 of membrane cofactor protein, the essential residues formed a contiguous region, suggesting a similar spatial relationship.  相似文献   

9.
The extracellular domain of the complement receptor type 1 (CR1; CD35) consists entirely of 30 complement control protein repeats (CCPs). CR1 has two distinct functional sites, site 1 (CCPs 1-3) and two copies of site 2 (CCPs 8-10 and CCPs 15-17). In this report we further define the structural requirements for decay-accelerating activity (DAA) for the classical pathway (CP) C3 and C5 convertases and, using these results, generate more potent decay accelerators. Previously, we demonstrated that both sites 1 and 2, tandemly arranged, are required for efficient DAA for C5 convertases. We show that site 1 dissociates the CP C5 convertase, whereas the role of site 2 is to bind the C3b subunit. The intervening CCPs between two functional sites are required for optimal DAA, suggesting that a spatial orientation of the two sites is important. DAA for the CP C3 convertase is increased synergistically if two copies of site 1, particularly those carrying DAA-increasing mutations, are contained within one protein. DAA in such constructs may exceed that of long homologous repeat A (CCPs 1-7) by up to 58-fold. To explain this synergy, we propose a dimeric structure for the CP C3 convertase on cell surfaces. We also extended our previous studies of the amino acid requirements for DAA of site 1 and found that the CCP 1/CCP 2 junction is critical and that Phe82 may contact the C3 convertases. These observations increase our understanding of the mechanism of DAA. In addition, a more potent decay-accelerating form of CR1 was generated.  相似文献   

10.
The goal of this study was to identify the site(s) in CR1 that mediate the dissociation of the C3 and C5 convertases. To that end, truncated derivatives of CR1 whose extracellular part is composed of 30 tandem repeating modules, termed complement control protein repeats (CCPs), were generated. Site 1 (CCPs 1-3) alone mediated the decay acceleration of the classical and alternative pathway C3 convertases. Site 2 (CCPs 8-10 or the nearly identical CCPs 15-17) had one-fifth the activity of site 1. In contrast, for the C5 convertase, site 1 had only 0.5% of the decay accelerating activity, while site 2 had no detectable activity. Efficient C5 decay accelerating activity was detected in recombinants that carried both site 1 and site 2. The activity was reduced if the intervening repeats between site 1 and site 2 were deleted. The results indicate that, for the C5 convertases, decay accelerating activity is mediated primarily by site 1. A properly spaced site 2 has an important auxiliary role, which may involve its C3b binding capacity. Moreover, using homologous substitution mutagenesis, residues important in site 1 for dissociating activity were identified. Based on these results, we generated proteins one-fourth the size of CR1 but with enhanced decay accelerating activity for the C3 convertases.  相似文献   

11.
Kaposi's sarcoma-associated human herpesvirus (KSHV) is thought to cause Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Previously, we reported that the KSHV complement control protein (KCP) encoded within the viral genome is a potent regulator of the complement system; it acts both as a cofactor for factor I and accelerates decay of the C3 convertases (Spiller, O. B., Blackbourn, D. J., Mark, L., Proctor, D. G., and Blom, A. M. (2003) J. Biol. Chem. 278, 9283-9289). KCP is a homologue to human complement regulators, being comprised of four complement control protein (CCP) domains. In this, the first study to identify the functional sites of a viral homologue at the amino acid level, we created a three-dimensional homology-based model followed by site-directed mutagenesis to locate complement regulatory sites. Classical pathway regulation, both through decay acceleration and factor I cleavage of C4b, required a cluster of positively charged amino acids in CCP1 stretching into CCP2 (Arg-20, Arg-33, Arg-35, Lys-64, Lys-65, and Lys-88) as well as positively (Lys-131, Lys-133, and His-135) and negatively (Glu-99, Glu-152, and Asp-155) charged areas at opposing faces of the border region between CCPs 2 and 3. The regulation of the alternative pathway (via factor I-mediated C3b cleavage) was found to both overlap with classical pathway regulatory sites (Lys-64, Lys-65, Lys-88 and Lys-131, Lys-133, His-135) as well as require unique, more C-terminal residues in CCPs 3 and 4 (His-158, His-171, and His-213) and CCP 4 (Phe-195, Phe-207, and Leu-209). We show here that KCP has evolved to maintain the spatial structure of its functional sites, especially the positively charged patches, compared with host complement regulators.  相似文献   

12.
Complement, which bridges innate and adaptive immune responses as well as humoral and cell-mediated immunity, is antiviral. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a lytic cycle protein called KSHV complement control protein (KCP) that inhibits activation of the complement cascade. It does so by regulating C3 convertases, accelerating their decay, and acting as a cofactor for factor I degradation of C4b and C3b, two components of the C3 and C5 convertases. These complement regulatory activities require the short consensus repeat (SCR) motifs, of which KCP has four (SCRs 1 to 4). We found that in addition to KCP being expressed on the surfaces of experimentally infected endothelial cells, it is associated with the envelope of purified KSHV virions, potentially protecting them from complement-mediated immunity. Furthermore, recombinant KCP binds heparin, an analogue of the known KSHV cell attachment receptor heparan sulfate, facilitating infection. Treating virus with an anti-KCP monoclonal antibody (MAb), BSF8, inhibited KSHV infection of cells by 35%. Epitope mapping of MAb BSF8 revealed that it binds within SCR domains 1 and 2, also the region of the protein involved in heparin binding. This MAb strongly inhibited classical C3 convertase decay acceleration by KCP and cofactor activity for C4b cleavage but not C3b cleavage. Our data suggest similar topological requirements for cell binding by KSHV, heparin binding, and regulation of C4b-containing C3 convertases but not for factor I-mediated cleavage of C3b. Importantly, they suggest KCP confers at least two functions on the virion: cell binding with concomitant infection and immune evasion.  相似文献   

13.
There is compelling evidence that a unique innate immune response in the CNS plays a critical role in host defense and clearance of toxic cell debris. Although complement has been implicated in neuronal impairment, axonal loss, and demyelination, some preliminary evidence suggests that the initial insult consequently activates surrounding cells to signal neuroprotective activities. Using two different models of experimental autoimmune encephalomyelitis, we herein demonstrate selective C1q complement activation on neuron cell bodies and axons. Interestingly, in brains with chronic but not acute experimental autoimmune encephalomyelitis, C3b opsonization of neuronal cell bodies and axons was consistently associated with robust neuronal expression of one of the most effective complement regulators, decay-accelerating factor (CD55). In contrast, levels of other complement inhibitors, complement receptor 1 (CD35), membrane cofactor protein (CD46), and CD59 were largely unaffected on neurons and reactive glial cells in both conditions. In vitro, we found that proinflammatory stimuli (cytokines and sublytic doses of complement) failed to up-regulate CD55 expression on cultured IMR32 neuronal cells. Interestingly, overexpression of GPI-anchored CD55 on IMR32 was capable of modulating raft-associated protein kinase activities without affecting MAPK activities and neuronal apoptosis. Critically, ectopic expression of decay-accelerating factor conferred strong protection of neurons against complement attack (opsonization and lysis). We conclude that increased CD55 expression by neurons may represent a key protective signaling mechanism mobilized by brain cells to withstand complement activation and to survive within an inflammatory site.  相似文献   

14.
We prepared mouse monoclonal antibodies to human C4-binding protein (C4-bp) by fusing spleen cells from mice immunized with purified C4-bp to the mouse myeloma line P3U1. Of four monoclonal antibodies that reacted with intact C4-bp, two were specific for a 48K fragment, one of the chymotryptic cleavage products of C4-bp, and one was specific for another fragment (160K). The fourth monoclonal antibody did not react with either fragment. One of the monoclonals that reacted with the 48K fragment blocked the binding of C4-bp to cell-bound C4b. This monoclonal antibody (TK3) also inhibited two other functions of C4-bp, serving as an essential cofactor for C3b/C4b inactivator (I) in the cleavage of fluid-phase C4b and accelerating the decay of C2a from the C4b,2a complex. The other monoclonals had little or no effect on these activities of C4-bp. In addition, we found that the 48K fragment lost the binding affinity for C4b. However, it can function as a cofactor for I and as a decay-accelerator, although its activities were about 200 times weaker than intact C4-bp on a molar basis. The monoclonal antibody TK3 completely inhibited these activities of the 48K fragment. On the basis of these findings, we conclude that the functionally active site of C4-bp is located on the 48K fragment. Probably, the cofactor and decay-accelerating activities of C4-bp result from the binding of C4-bp to C4b.  相似文献   

15.
The herpesvirus saimiri genome encodes a complement control protein homolog (CCPH). Stable mammalian cell transfectants expressing a recombinant transmembrane form of CCPH (mCCPH) or a 5'FLAG epitope-tagged mCCPH (5'FLAGmCCPH) conferred resistance to complement-mediated cell damage by inhibiting the lytic activity of human serum complement. The function of CCPH was further defined by showing that the mCCPH and the 5'FLAGmCCPH transfectants inhibited C3 convertase activity and effectively reduced cell surface deposition of the activated complement component, C3d.  相似文献   

16.
Regulation of complement activation by pathogens and the host are critical for survival. Using two highly related orthopoxvirus proteins, the vaccinia and variola (smallpox) virus complement control proteins, which differ by only 11 aa, but differ 1000-fold in their ability to regulate complement activation, we investigated the role of electrostatic potential in predicting functional activity. Electrostatic modeling of the two proteins predicted that altering the vaccinia virus protein to contain the amino acids present in the second short consensus repeat domain of the smallpox protein would result in a vaccinia virus protein with increased complement regulatory activity. Mutagenesis of the vaccinia virus protein confirmed that changing the electrostatic potential of specific regions of the molecule influences its activity and identifies critical residues that result in enhanced function as measured by binding to C3b, inhibition of the alternative pathway of complement activation, and cofactor activity. In addition, we also demonstrate that despite the enhanced activity of the variola virus protein, its cofactor activity in the factor I-mediated degradation of C3b does not result in the cleavage of the alpha' chain of C3b between residues 954-955. Our data have important implications in our understanding of how regulators of complement activation interact with complement, the regulation of the innate immune system, and the rational design of potent complement inhibitors that might be used as therapeutic agents.  相似文献   

17.
Mild trypsinization of human erythrocyte stroma solubilized CR1 (complement receptor type 1, C3b/C4b receptor) without significant loss of decay-accelerating activity to C5 convertases on hemolytic intermediate cells (EAC 1-3b, P). The solubilized CR1 was purified using DEAE-Sephacel, C3-Sepharose, and anti-CR1-Sepharose column chromatographies. The purified material showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing conditions, and its molecular weight was determined to be 175K, about 20K smaller than native CR1. Because the purified sample was separated into the several segments by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the molecule is considered to be nicked and those segments are associated by disulfide bonds. These results mean that a large portion of the CR1 molecule is present outside of the plasma membrane of erythrocytes, and the intramembranous and cytoplasmic domains are not necessary for decay-accelerating activity.  相似文献   

18.
Infective- and vertebrate-stage trypomastigotes of Trypanosoma cruzi resist serum killing by the alternative complement pathway, whereas noninfective vector-stage epimastigotes, from which trypomastigotes derive, are serum-sensitive. This form of developmental preadaption is commonly observed in protozoan parasites, but its mechanisms are poorly understood. We have demonstrated previously that trypomastigotes spontaneously shed molecules which interfere with formation and accelerate the intrinsic decay of complement C3 convertases, a finding which may explain the evasion of complement lysis by trypomastigotes. We now describe the partial purification and characterization of the T. cruzi C3 convertase inhibitor from the supernatant of culture metacyclic and tissue culture trypomastigotes. Decay-accelerating activity for both classical and alternative pathway C3 convertases copurifies on anion-exchange fast protein liquid chromatography and chromatofocusing with 35S-labeled molecules of 87-93 kDa, pI 5.6-5.8. The labeled components are destroyed by papain and retained on concanavalin A-Sepharose, procedures which remove functional decay-accelerating activity from the supernatant. The 87-93-kDa components are immunoprecipitated by sera from patients chronically infected with T. cruzi, but not by antisera to any known regulatory proteins of the human complement cascade. Lytic activity for tissue culture trypomastigotes in chagasic sera is associated with antibody reactivity against the 87-93-kDa 35S-labeled components and with inhibition of decay-accelerating activity. The T. cruzi factor is the first developmentally regulated microbial complement inhibitor to be biochemically characterized.  相似文献   

19.
Herpesvirus saimiri encodes a functional homolog of human regulator-of-complement-activation proteins named CCPH that inactivates complement by accelerating the decay of C3 convertases and by serving as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we map the functional domains of CCPH. We demonstrate that short consensus repeat 2 (SCR2) is the minimum domain essential for classical/lectin pathway C3 convertase decay-accelerating activity as well as for factor I cofactor activity for C3b and C4b. Thus, CCPH is the first example wherein a single SCR domain has been shown to display complement regulatory functions.The complement system is an ancient and yet highly evolved effector mechanism of immune defense that forms an imperative branch of innate immunity (23, 46). In addition, recent findings have clearly revealed its role as a vital viaduct between the innate and acquired immune systems (6, 18). Thus, it is not surprising that the system helps in purging a wide array of invaders, including viruses. Consequently, for their successful survival, many viruses have developed mechanisms to subvert the host complement system (7, 24, 26, 29, 39, 45). Herpesviruses and poxviruses, in particular, subvert host complement by encoding structural and/or functional homologs of human complement regulators belonging to the regulator-of-complement-activation (RCA) family, by capturing host membrane complement regulators and by using cellular receptors for entering cells (1, 8, 15, 23).The RCA proteins are formed by multiple tandem repeats of bead-like complement control protein (CCP) domains or short consensus repeats (SCRs) separated by short linkers. It has been suggested that the sequence variations enforced upon these SCR domain folds and the interdomain dynamics dictate the functionality of the complement regulators (17, 19, 44, 49). Because sequence similarity in herpesviral complement regulators varies between 43% and 89% and in poxviral complement regulators exceeds 91%, it is likely that the structural diversity in herpesviral complement regulators may have resulted in functional differences in these proteins and/or have resulted in variation in structural requirements for complement regulation. In the herpesviridae family, detailed functional characterization has been performed for complement regulators of Kaposi''s sarcoma-associated herpesvirus (Kaposica/KCP) (28, 42), herpesvirus saimiri (HVS) (CCPH) (10, 38), and rhesus rhadinovirus (RCP) (31). All these proteins showed conservation of complement regulatory activities, indicating thereby that structural diversity has not resulted in loss of complement regulatory functions in these proteins. However, it is not clear whether sequence variations within the herpesviral complement regulators have resulted in differences in the domain requirements for complement regulatory activities, since mapping of functional domains has been performed only for Kaposica (30, 43). In the present study, we therefore have mapped the complement regulatory domains of HVS CCPH to get further insight into diversity in domain requirements for functional activities.HVS is a classical prototype of the gamma 2-herpesviruses or rhadinoviruses. It causes rapidly progressing fulminant lymphoma, lymphosarcoma, and leukemia of T-cell origin in marmosets, owl monkeys, and other species of New World primates but not in its natural host, the squirrel monkey (9, 16). Unlike other herpesviruses, it encodes two complement regulators: an RCA homolog (ORF 4; CCPH) that regulates the early steps of complement activation (2, 10) and a CD59 homolog (ORF 15) that inhibits the late steps of complement activation (4, 36). The RCA homolog is formed of four SCR modules (Fig. (Fig.1).1). As a result of alternative splicing, the protein is expressed as a full-length membrane-bound form (mCCPH) containing the transmembrane region as well as a spliced secretory form (sCCPH) lacking the transmembrane region (2). Earlier, we showed that sCCPH inhibits complement by targeting C3 convertases: (i) it supports serine protease factor I-mediated inactivation of C3b and C4b, the subunits of C3 convertases (cofactor activity), and (ii) it accelerates the irreversible decay of the classical pathway (CP)/lectin pathway and to a limited extent the alternative pathway (AP) C3 convertases (decay-accelerating activity [DAA]) (38).Open in a separate windowFIG. 1.Schematic illustration of sCCPH and SDS-PAGE analysis of purified recombinant sCCPH and its deletion mutants. (Top) Schematic representation of the structure of the soluble form of CCPH (sCCPH), which is composed of four SCRs. The domains are numbered, and the minimum domains shown to be important for C3b and C4b cofactor activities (CFA) and CP DAA are identified. (Bottom) Expressed and purified sCCPH and its deletion mutants were analyzed by 12% (left) and 13% (right) SDS-PAGE under reducing conditions and stained with Coomassie blue. Molecular weights as determined by SDS-PAGE: for sCCPH, 32,000; for SCR1-3, 26,000; for SCR2-4, 27,500; for SCR1-2, 17,000; for SCR2-3, 17,500; for SCR3-4, 16,500; for SCR1, 9,500; for SCR2, 7,000; for SCR3, 8,000; and for SCR4, 8,000. Molecular mass is expressed as kilodaltons in the figure.(This work was done in partial fulfillment of the Ph.D. thesis requirements of A.K.S., University of Pune, Pune, India.)In order to map the functional domains of sCCPH, we have generated a series of soluble triple, double, and single SCR deletion mutants. In brief, the deletion mutants of sCCPH comprising SCR1-3, -2-4, -1-2, -2-3, and -3-4 as well as SCR1, -2, -3, and -4 were constructed from the full-length HVS sCCPH clone (38) by PCR amplification and cloning into the bacterial expression vector pET29. The authenticity of each of the clones was confirmed by DNA sequencing, and then they were transformed into the Escherichia coli BL21 strain for expression. The mutants carried the histidine tag at the C terminus and hence were purified to homogeneity by using histidine affinity chromatography. Refolding of the purified proteins was performed by using the rapid dilution method as previously described (38, 47, 48), and the refolded proteins were loaded onto a Superose 12 gel filtration column (Pharmacia) to obtain monodisperse populations of the expressed mutants (38, 48). The preservation of various functions in mutants (see below) suggests that the mutants have maintained their proper conformation. The expressed proteins were >95% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Fig. (Fig.11).To identify the domains required for cofactor activities of sCCPH against C3b and C4b, we utilized a fluid phase assay wherein C3b or C4b was incubated with each of the deletion mutants and factor I, and inactivation of C3b/C4b (cleavage of the α′-chain) was determined by running the samples on SDS-PAGE gels. It is clear from the data presented in Fig. Fig.22 that sCCPH and the mutants SCR1-3, -2-4, and -1-2 supported the cleavage of the α′-chain of C3b. A very weak cleavage was also supported by SCR2-3 and -3-4. The cleavage of the α′-chain of C4b, however, was supported by sCCPH and the mutants SCR1-3, -2-4, -1-2, and -2-3 but not by SCR3-4 (Fig. (Fig.2).2). Together, these data point out that SCR1 and -2 considerably contribute to the C3b and C4b cofactor activities of sCCPH but that SCR3 and SCR4 in the case of C3b cofactor activity and SCR3 in the case of C4b cofactor activity contribute to its optimal activity. These results, however, did not elucidate whether a single domain(s) could impart the cofactor activities. We therefore expressed the single-domain mutants (SCR1, SCR2, SCR3, and SCR4) and analyzed their cofactor activities. The results presented in Fig. Fig.33 indicate that SCR2, by itself, possesses the ability to support factor I-mediated inactivation of C3b and C4b; SCR3 also displayed very weak cofactor activity against C3b when used at higher concentrations (88 μM; data not shown). These results suggest that structural elements involved in the interaction of sCCPH with factor I are primarily located within SCR2 and -3. Admittedly, the single-domain mutants possess very weak cofactor activities and other domains too contribute to the optimal activity; the cofactor activities of SCR2 for C3b and C4b were 781- and 212-fold lower than that for sCCPH (Fig. (Fig.3).3). It should be mentioned here that earlier observations on mapping of the human RCA proteins (factor H, C4b-binding protein, membrane cofactor protein, and complement receptor 1) (3, 11-13, 21), Kaposica (30), and vaccinia virus CCP (VCP) (27) indicated that a minimum of two (in Kaposica) or three (in all other RCA proteins) successive SCR domains are necessary for factor I cofactor activities. Thus, sCCPH is the first complement regulator in which a single SCR domain has been shown to display the factor I cofactor function.Open in a separate windowFIG. 2.Analysis of factor I cofactor activity of sCCPH and its deletion mutants for human complement proteins C3b and C4b. Cofactor activity was assessed by incubating 3.0 μg of human C3b (upper panels) or C4b (lower panels) with sCCPH/SCR1-3/SCR2-4 (4.0 μM) or SCR1-2/2-3/3-4 (24 μM) in the presence or absence of factor I (100 ng) for the indicated time periods at 37°C in 10 mM sodium phosphate, pH 7.4, containing 145 mM NaCl. The reactions were stopped by addition of sample buffer containing dithiothreitol, and the amount of C3b or C4b cleaved was visualized by subjecting the samples to SDS-PAGE analysis on 10% or 11.5% gel, respectively, and staining with Coomassie blue. During C3b cleavage, the α′-chain is cleaved into N-terminal 68-kDa and C-terminal 46-kDa fragments. The 46-kDa fragment is then cleaved into a 43-kDa fragment. These cleavages indicate inactivation of C3b. In the case of C4b, the α′-chain is cleaved into N-terminal 27-kDa, C-terminal 16-kDa (not visible in the gel), and central C4d fragments. These cleavages indicate the inactivation of C4b.Open in a separate windowFIG. 3.Analysis of factor I cofactor activity (CFA) of single SCR mutants of sCCPH for human complement proteins C3b and C4b. (Upper panels) Cofactor activity was assessed by incubating 3.0 μg of human C3b or C4b with the single SCR mutants (44 μM) in the presence or absence of factor I (100 ng) for 4 h at 37°C in PBS (10 mM sodium phosphate, pH 7.4, containing 145 mM NaCl). The reactions were stopped by addition of sample buffer containing dithiothreitol, and the amount of C3b or C4b cleaved was visualized by subjecting the samples to 13% SDS-PAGE and stained with Coomassie blue. Cleavage of the α′-chain of C3b and C4b and generation of cleavage products indicate the inactivation of these proteins. (Middle panels) Human C3b (3.0 μg) or C4b (3.0 μg) and factor I (100 ng) were incubated in PBS with increasing concentrations of sCCPH or the SCR2 mutant at 37°C for 1 h, and the cleavage products were analyzed as described above. (Lower panels) The intensity of the α′-chains of C3b and C4b in the middle panels was determined densitometrically and is represented graphically. The closed and open circles represent sCCPH and the SCR2 mutant, respectively.As discussed above, in addition to the inactivation of subunits of C3 convertases (C3b and C4b), sCCPH also regulates C3 convertases by accelerating their decay. It possesses considerable DAA for the CP/lectin pathway C3 convertase (C4b,2a) and a poor decay activity for the AP C3 convertase (C3b,Bb). Thus, we next examined the DAAs of the various sCCPH mutants to map the domains required for this function. To measure the CP C3 convertase decay activity, the C4b,2a enzyme was formed on sheep erythrocytes and allowed to decay in the presence of various mutants. The remaining enzyme activity was then measured by incubating the reaction mixture with EDTA sera (a source of C3 to C9) and measuring hemolysis. Apart from sCCPH, mutants SCR1-3, -1-2, and -2-3 showed substantial DAA for the CP C3 convertase (Fig. (Fig.4).4). These data suggested that SCR1-3 is primarily responsible for this activity. On a molar basis, SCR1-3 was 1.6-fold less efficient than sCCPH. Because both SCR1-2 and SCR2-3 possessed the decay activity, it was likely that similar to the cofactor activities, a single SCR domain of sCCPH might also possess the DAA for the CP C3 convertase. Hence, we also assessed the DAAs of the single-domain mutants. Interestingly again, SCR2 was the only single domain that distinctly displayed CP DAA (Fig. (Fig.4);4); however, on a molar basis, it was 26-fold less active than sCCPH. Previous data on the involvement of SCR domains in decay acceleration of CP C3 convertase in human RCA proteins (decay-accelerating factor, complement receptor 1, and C4b-binding protein) (3, 5, 20) and viral RCA homologs (Kaposica and VCP) (27, 30) have shown that a minimum of two or three consecutive domains are necessary for the activity. Thus, sCCPH is the only prototype to date in which a single SCR is adequate to impart the CP DAA.Open in a separate windowFIG. 4.Analysis of CP and AP C3 convertase DAAs of sCCPH and its mutants. (Upper panel) The CP C3 convertase C4b,2a was formed on antibody-coated sheep erythrocytes (EA) by sequentially incubating them with human C1, C4, and C2 (Calbiochem). The C3 convertase on the cells was then allowed to decay by incubating EA-C4b,2a with various concentrations of sCCPH or its mutants for 5 min at 22°C, and the activity of the remaining enzyme was assessed by measuring the cell lysis following incubation for 30 min at 37°C with Guinea pig sera containing 40 mM EDTA (27, 32). (Lower panel) The AP C3 convertase C3b,Bb was formed on sheep erythrocytes (ES) by incubating them with human C3 (Calbiochem) and factors B and D in the presence of NiCl2. The C3 convertase on the cells was then allowed to decay by incubating ES-C3b,Bb with various concentrations of sCCPH or its mutants for 10 min at 37°C, and the activity of the remaining enzyme was assessed by measuring the cell lysis following incubation with EDTA-sera for 30 min at 37°C (35, 37). The data obtained were normalized by considering the lysis that occurred in the absence of an inhibitor as 100% lysis.Although sCCPH is known to possess limited AP C3 convertase DAA, we sought to determine whether this limited activity is localized in a specific region or the full-length protein. To measure the AP DAA, the C3 convertase C3b,Bb was formed on the sheep erythrocytes and incubated with sCCPH or with each of its deletion mutants. The decay of the AP C3 convertase was assessed by adding EDTA sera and measuring hemolysis. Although the full-length protein displayed a limited AP C3 convertase, none of the deletion mutants exhibited any activity (Fig. (Fig.44).Inactivation of C3 convertases by the RCA proteins, owing to their cofactor and decay activities, requires interaction of these proteins with C3b and C4b. The ligand binding activity of the RCA proteins, however, does not always correlate with their cofactor and decay activities (12, 34), as apart from ligand binding, cofactor activity involves interaction of the RCA protein with factor I (40), and decay activity involves interaction of the RCA protein with C2a or Bb (22, 25). In order to determine whether cofactor and decay activity data of sCCPH and the various mutants correlate with the ligand binding data, we measured binding of these proteins to C3b and C4b by using a surface plasmon resonance-based assay (38). As observed earlier (38), sCCPH displayed higher affinity for C4b than for C3b (Fig. (Fig.55 and Table Table1).1). When we measured binding of various deletion mutants to C3b and C4b, only SCR2-4 showed binding to C3b, and SCR1-3 showed binding to C4b (Fig. (Fig.5).5). However, there were reductions of about 16- and 14-fold in the affinities of these deletion mutants for C3b and C4b, respectively, compared to that for sCCPH (Table (Table1),1), suggesting that all the four domains contribute to binding to C3b and C4b. Because most of the deletion mutants that displayed complement regulatory activities possessed negligible binding to C3b and C4b, it is clear that binding of the mutants does not correlate with their cofactor and decay activities. It is likely that during cofactor activity, interaction of the mutants with C3b and C4b is stabilized by the interaction of factor I with C3b/C4b and the mutants. Similarly, during DAAs, the mutants may possess better affinity for the convertases than their subunits C3b and C4b. Consistent with this argument, decay-accelerating factor has previously been shown to bind to CP C3 convertase with 1,000-fold higher affinity than to C4b (33).Open in a separate windowFIG. 5.Binding of sCCPH and its mutants to C3b and C4b. Binding was determined by a surface plasmon resonance-based assay (38). Sensograms were generated by immobilizing biotinylated C3b (1,200 response units [RUs]) and C4b (940 RUs) on streptavidin chips (Sensor Chip SA; Biacore AB; additional RUs of C3b [∼6,000 RUs] were deposited by forming AP C3 convertase on the chip and flowing native C3 [14]) and injecting sCCPH or its mutants in PBS-T (10 mM sodium phosphate and 145 mM NaCl, pH 7.4, containing 0.05% Tween 20) over the chip. Flow cells immobilized with bovine serum albumin-biotin (Sigma) served as control flow cells. (Left panels) Binding of sCCPH and its various mutants to C3b (top) and C4b (bottom). The sensograms were generated by injecting 500 nM and 2 μM of sCCPH and its various mutants over C3b and C4b chips, respectively. (Middle panels) Sensogram overlay for the interaction between sCCPH and C3b (top) or sCCPH and C4b (bottom). (Right panels) Sensogram overlay for the interaction between SCR2-4 and C3b (top) and SCR1-3 and C4b (bottom). The concentrations of proteins injected are indicated at the right of the sensograms. The solid lines in the top middle and top right panels represent the global fitting of the data to a 1:1 Langmuir binding model with a drifting baseline (A + B ↔ AB; Biaevaluation 4.1). The small arrows in the bottom middle and right panels indicate the time points used for evaluating the steady-state affinity data.

TABLE 1.

Kinetic and affinity data for the interactions of sCCPH and the deletion mutants with human complement proteins C3b and C4ba
LigandAnalytekd (1/s)/ka (1/m · s)SE (kd/ka)KD (m)χ2
C3bsCCPH4.6 × 10−3/2064.41 × 10−5/11.32.23 × 10−52.02b
C4bsCCPHNANA3.51 × 10−71.69c
C3bSCR2-40.0542/1564.74 × 10−4/12.43.48 × 10−41.63b
C4bSCR1-3NANA4.9 × 10−63.27c
Open in a separate windowaNA, not applicable; ka, association rate constant; kd, dissociation rate constant; KD, equilibrium rate constant; SE, standard error.bData were calculated by global fitting to a 1:1 Langmuir binding model with a drifting baseline (BIAevaluation 4.1).cData did not fit the 1:1 model and were calculated by steady-state analysis (BIAevaluation 4.1).The presence of SCR domains is not restricted to complement regulators, as SCR domains are also present in other complement proteins (e.g., C1r, C1s, MASP-1, MASP-2, factor B, C2, C6, and C7) and noncomplement proteins (e.g., β2-GPI, interleukin-2 and -15 receptors, GABAB receptor type 1a, E-selectin, brevican, CSMD-1, and polydom) (41). The SCR domains are always present as a pair or more, and the presence of a single SCR domain in proteins is rare (e.g., interleukin-15R and brevican). Further, data obtained thus far from domain mapping studies indicate that a minimum of two successive SCR domains are required for imparting any function. Together, these findings led to a paradigm: a two-SCR structure is the smallest basic structural unit required for exhibiting any function (44). In the present study, data obtained for HVS sCCPH elucidate for the first time that a single SCR domain (SCR2) is able to impart factor I cofactor activities as well as DAA. Therefore, clearly, the current belief regarding the requirement of multiple domains for displaying any functional activity requires revision. We would like to point out here that though earlier studies of viral complement regulators have used comparable molar excess of regulators for domain mapping studies, similar studies performed for human complement regulators utilized 5- to 50-fold less molar excess of regulators than the present study. Thus, it is likely that single domains in human complement regulators too may possess the complement regulatory activities.In summary, our findings demonstrate that though three SCR domains of HVS CCPH are necessary for displaying the optimum complement regulatory activities, a single domain is sufficient to impart the various complement regulatory activities. These data therefore point out that sequence variations in herpesviral complement regulators have resulted in a notable difference in domain requirements for the functional activities in these proteins.  相似文献   

20.
Evolutionary relationships among members of the regulator of complement activation (RCA) gene cluster were analyzed using neighbor-joining and parsimony methods of phylogenetic tree inference. We investigated the structural and functional similarities among short consensus repeats (SCRs) of the following human proteins: the alpha chain of the C4b-binding protein (C4bpalpha), factor H (FH), factor H-related proteins (FHR-1 through FHR-4), complement receptors type 1 (CR1) and type 2 (CR2), the CR1-like protein (CR1L), membrane cofactor protein (MCP), decay accelerating factor (DAF), and the sand bass proteins, the cofactor protein (SBP1) and its homolog, the cofactor-related protein (SBCRP-1). Also included are the beta chain of the human C4b-binding protein (C4bpbeta) and the b subunit of human blood-clotting factor XIII (FXIIIb). Our results indicate that the human plasma complement regulators, FH and C4bpalpha, fall into two distinct groups on the basis of their sequence divergence. Homology among RCA proteins is in agreement with their chromosomal location, with the exception of C4bpbeta. The evolutionary relationships among individual short consensus repeats are confirmed by the exon/intron structure of the RCA members. Structural similarities among repeats of the RCA proteins correlate with their functional activities and demonstrate the importance of the N-terminal SCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号