首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.  相似文献   

2.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

3.
Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.  相似文献   

4.
Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral–seaweed–herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence.  相似文献   

5.
6.
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore‐ and pollinator‐mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian‐inherited chemical antiherbivore defence—the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore‐ and/or pollinator‐mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore‐mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.  相似文献   

7.
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies.Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored.Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent.Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.  相似文献   

8.
9.
Thomas Roach  Anja Krieger-Liszkay 《BBA》2012,1817(12):2158-2165
The PsbS protein is recognised in higher plants as an important component in dissipating excess light energy via its regulation of non-photochemical quenching. We investigated photosynthetic responses in the arabidopsis npq4 mutant, which lacks PsbS, and in a mutant over-expressing PsbS (oePsbS). Growth under low light led to npq4 and wild-type plants being visibly indistinguishable, but induced a phenotype in oePsbS plants, which were smaller and had shorter flowering spikes. Here we report that chloroplasts from npq4 generated more singlet oxygen (1O2) than those from oePsbS. This accompanied a higher extent of photosystem II photoinhibition of leaves from npq4 plants. In contrast, oePsbS was more damaged by high light than npq4 and the wild-type at the level of photosystem I. The plastoquinone pool, as measured by thermoluminescence, was more oxidised in the oePsbS than in npq4, whilst the amount of photo-oxidisable P700, as probed with actinic light or saturating flashes, was higher in oePsbS compared to wild-type and npq4. Taken together, this indicates that the level of PsbS has a regulatory role in cyclic electron flow. Overall, we show that under high light oePsbS plants were more protected from 1O2 at the level of photosystem II, whereas lack of cyclic electron flow rendered them susceptible to damage at photosystem I. Cyclic electron flow is concluded to be essential for protecting photosystem I from high light stress.  相似文献   

10.
Glucosinolates are plant secondary compounds involved in direct chemical defence by cruciferous plants against herbivores. The glucosinolate profile can be affected by abiotic and biotic environmental stimuli. We studied changes in glucosinolate patterns in leaves of non-transgenic oilseed rape (Brassica napus ssp. oleifera) under elevated atmospheric CO2 or ozone (O3) concentrations and compared them with those from transgenic for herbivore-resistance (Bacillus thuringiensis Cry1Ac endotoxin), to assess herbivory dynamics. Both elevated CO2 and O3 levels decreased indolic glucosinolate concentrations in transgenic and non-transgenic lines, whereas O3 specifically increased the concentration of an aromatic glucosinolate, 2-phenylethylglucosinolate. The herbivore-inducible indolic glucosinolate response was reduced in elevated O3 whereas elevated CO2 altered the induction dynamics of indolic and aliphatic glucosinolates. Herbivore-resistant Bt plants experienced minimal leaf damage after target herbivore Plutella xylostella feeding, but exhibited comparatively similar increase in glucosinolate concentrations after herbivory as non-transgenic plants, indicating that the endogenous glucosinolate defence was not severely compromised by transgenic modifications. The observed differences in constitutive and inducible glucosinolate concentrations of oilseed rape under elevated atmospheric CO2 and O3 might have implications for plant–herbivore interactions in Brassica crop-ecosystems in future climate scenarios.  相似文献   

11.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

12.
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant–herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore‐mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature.  相似文献   

13.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

14.
Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences.  相似文献   

15.
Summary A plant may lower its nutritive quality, for herbivores, by using secondary compounds, morphological characters and/or having a lowered nutrient content. If such traits decrease the amount of resources lost through herbivory, then they act as antiherbivore defences. However, if herbivores compensate for the lowered nutrient availability, by increasing their intake rates or by prolonging their feeding periods, then this may render the defence useless. I analyse the conditions for evolution of this type of plant defences in a game theoretical model. The predictions of the model depend on the amount of compensatory feeding performed by the herbivores and on the herbivores' mobility in relation to the spatial structure of the plant population. When herbivores cannot compensate for a lowered nutritive quality, the defence can evolve irrespective of the type of herbivore. When herbivores can compensate for such defences, the outcome depends on how the herbivores compensate. In situations where herbivores compensate only on defended plants, which could correspond to immobile herbivores, this type of defence can evolve only if the level of compensation is lower than a certain critical value. When herbivores compensate more on defended than on undefended plants, e.g. because of low mobility, the outcome depends on the level of compensation performed on defended plants. If this level of compensation is high, then the model predicts a stable coexistence of defended and undefended plants and, if it is low, then the populations can consist of only defended plants. When herbivores compensate more on undefended plants than on defended ones, e.g. highly mobile herbivores, the result is populations consisting of either only defended plants, or only undefended plants. Consequently, the fact that herbivores may compensate for lowered nutrient quality does not, as such, nullify the notion of low nutrient quality as a plant defence. However, compensatory feeding may restrict the conditions for the evolution of such defences.  相似文献   

16.
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host‐searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA‐treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA‐treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect‐feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.  相似文献   

17.
Plants have evolved several anti‐herbivory strategies, including direct defences, such as mechanical and chemical defences, and indirect or biotic defences, such as the recruitment of defending animals. We examined whether the investment plants make in direct defences differs between those which do and do not invest in biotic defences, by comparing standing herbivory and palatability of congeneric species with and without indirect defences at two ontogenetic stages: before and after the onset of indirect defences. We used Cordia alliodora and Croton suberosus as the species with indirect defences and Cordia elaeagnoides and Croton pseudoniveus as the species without indirect defences. We predicted that herbivores would prefer to eat species and stages with indirect defences to those without them. As predicted, we found that herbivores preferred species and ontogenetic stages with indirect defences in all cases. Overall, however, natural levels of herbivory were lower in species with indirect defences. We conclude that indirect defences offer effective protection against herbivores and posit that their recruitment allows plants to reduce investment in other defence mechanisms. Our results support the notion that plants trade‐off between direct and indirect defensive strategies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 536–543.  相似文献   

18.
Some plant species growing on metalliferous soils are able to accumulate heavy metals in their shoots up to very high concentrations, but the selective advantage of this behaviour is still unknown. The most popular hypothesis, that metals protect plants against herbivores, has been tested several times in laboratory conditions, with contradictory results. We carried out the first large-scale test of the defence hypothesis in eight natural populations of the model Zn hyperaccumulator Thlaspi caerulescens J. and C. Presl (Brassicaceae). In two climatic regions (temperate, Belgium–Luxembourg, and Mediterranean, southern France), we worked in metalliferous and in normal, uncontaminated environments, with plants spanning a wide range of Zn concentrations. We also examined the importance of glucosinolates (main secondary metabolites of Brassicaceae) as antiherbivore defences. When exposed to natural herbivore populations, T. caerulescens suffered lower herbivory pressures in metal-enriched soils than in normal soils, both in Belgium–Luxembourg and in southern France. The trapping of gastropods shows an overall lower population density in metalliferous compared to normal environments, which suggests that herbivory pressure from gastropods is lower on metalliferous soils. In addition, foliar concentration of glucosinolates was constitutively lower in all populations from metal-enriched soils, suggesting that these have evolved towards lower investment in organic defences in response to lower herbivory pressure. The Zn concentration of plants had a protective role only for Belgian metallicolous plants when transplanted in normal soils of Luxembourg. These results do not support the hypothesis that Zn plays a key role in the protection of T. caerulescens against enemies. In contrast, glucosinolates appear to be directly involved in the defence of this hyperaccumulator against herbivores.  相似文献   

19.
Val  Ek Del  Dirzo  Rodolfo 《Plant Ecology》2003,169(1):35-41
Cecropia peltata L. is a myrmecophyte, with a wide distribution in the neotropics, predominantly associated with ants of the genus Azteca. It has been shown that Azteca ants defend Cecropia plants against herbivores, and that the plants provide housing (hollow stems) and food (Müllerian bodies) for the ant colony. In the field, occupation by ants does not take place until plants have reached a minimum colonisable size (ca 1 m height), and defensive ants do not occupy small plants. Therefore, juvenile individuals lack such biotic defence. This constitutes an ontogenetic constraint to biotic defence in these plants. We tested the hypothesis that in the stage previous to colonisation plants of Cecropia peltata in a Mexican tropical forest may exhibit some alternative or complementary defensive mechanism against herbivores. We compared, in pre-colonised and colonised plants: rates of herbivory, concentrations of potentially defensive secondary metabolites (total phenolics and condensed tannins), and trichome density. We also conducted acceptability bioassays with a generalist herbivore (Spodoptera fugiperda). In addition, we measured plant growth to investigate if, by using alternative defence mechanisms, pre-colonised plants experience a reduced performance. Rates of herbivory were higher in pre-colonised individuals. Accordingly, leaf phenolics and tannin concentrations, as well as trichome density, were higher in colonised plants. In addition, acceptability bioassays showed that S. fugiperda preferred the leaves of pre-colonised plants. Relative growth rate was not statistically different between both types of plants. Contrary to our expectation, colonised plants, besides biotic defence by ants, also had higher concentrations of secondary metabolites, higher trichome density and lower herbivory and palatability than pre-colonised plants. This suggests that pre-colonised plants may deal with herbivores by other means and that older, larger plants invest more in all defences rather than shifting defensive mechanisms with ontogeny. Since growth rate of pre-colonised plants was comparable to that of colonised plants (despite the higher levels of herbivory of the former), we suggest that plant tolerance leading to compensation may be used by pre-colonised juveniles of C. peltata. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号