首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(α- -arabinofuranosyl)-α- -arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

2.
The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis (MTB) and the continuing pandemic of tuberculosis emphasizes the urgent need for the development of new anti-tubercular agents with novel drug targets. The recent structural elucidation of the mycobacterial cell wall highlights a large variety of structurally unique components that may be a basis for new drug development. This publication describes the synthesis, characterization, and screening of several octyl Galf(β,1→5)Galf and octyl Galf(β,1→6)Galf derivatives. A cell-free assay system has been utilized for galactosyltransferase activity using UDP[14C]Galf as the glycosyl donor, and in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). Certain derivatives showed moderate activities against MTB and MAC. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to totally deprotected disaccharides that more closely resemble the natural substrates in cell wall biosynthesis.  相似文献   

3.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

4.
The mycobacterial cell wall is a potential target for new drug development. Herein we report the preparation and activity of several n-octyl-5-(alpha-D-arabinofuranosyl)-beta-D-galactofuranoside derivatives. A cell-free assay system has been utilized for determination of the ability of disaccharide analogues to act as arabinosyltransferase acceptors using [14C]-DPA as the glycosyl donor. In addition, in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). One of these disaccharides showed moderate activity against MTB. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to a totally deprotected disaccharide that more closely resembles the natural substrates in cell wall biosynthesis.  相似文献   

5.
The biochemically unique structures of sugar residues in the outer cell wall of Mycobacterium tuberculosis (MTB) make the pathways for their biosynthesis and utilization attractive targets for the development of new and selective anti-tubercular agents. A cell-free assay system for galactosyltransferase activity using UDP[14C]Gal as the glycosyl donor, as well as an in vitro colorimetric broth micro-dilution assay system, were used to determine the activities of three beta-D-gal(f)(1-->4)-alpha-L-rham(p) octyl disaccharides as substrates and antimycobacterial agents respectively. The cell-free enzymatic studies using compounds 8 and 10 suggested that these disaccharides bind to and are effective substrates for a putative mycobacterial galactosyltransferase. The modified acceptor 8 was found to be a slower but prolonged binder as compared to the less substituted analogue 10 as evidenced by their Km and Vmax values. Moderate antimycobacterial activity was observed with compounds 8 and 9 against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC).  相似文献   

6.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

7.
The regioselectivity of the transglycosylation reaction catalyzed by extracellular α-galactosidases from filamentous fungi was studied using p-nitrophenyl α- -galactopyranoside. Regioisomers of p-nitrophenyl α- -galactobiopyranoside α(1→2), α(1→3) and α(1→6) were isolated and characterized. α-Galactosidases with pronounced regioselectivity towards α-Gal-O-R acceptor were identified.  相似文献   

8.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(alpha-D-arabinofuranosyl)-alpha-D-arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

9.
The (1→3)-β-d-glucan glucanohydrolases [(1→ 3)-GGH; EC 3.2.1.39] of barley (Hordeum vulgare L., cv Clipper) are encoded by a small gene family. Amino acid sequences deduced from cDNA and genomic clones for six members of the family exhibit overall positional identities ranging from 44% to 78%. Specific DNA and oligodeoxyribonucleotide (oligo) probes have been used to demonstrate that the (1→3)-GGH-encoding genes are differentially transcribed in young roots, young leaves and the aleurone of germinated grain. The high degree of sequence homology, coupled with characteristic patterns of codon usage and insertion of a single intron at a highly conserved position in the signal peptide region, indicate that the genes have shared a common evolutionary history. Similar structural features in genes encoding barley (1→3,1→4)-β-glucan 4-glucanohydrolases [(1→3,1→4)-GGH; EC 3.2.1.73] further indicate that the (l→3)-GGHs and (l→3,1→4)-GGHs are derived from a single ‘super’ gene family, in which genes encoding enzymes with related yet quite distinct substrate specificities have evolved, with an associated specialization of function. The (1→3,1→4)-GGHs mediate in plant cell wall metabolism through their ability to hydrolyse the (1→3,1→4)-β-glucans that are the major constituents in barley walls, while the (1→3)-GGHs, which are unable to degrade the plant (1→3,1→4)-β-glucans, can hydrolyse the (1→3)- and (1→3,1→6)-β-glucans of fungal cell walls.  相似文献   

10.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

11.
Botryosphaeran, a (13;16)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05, was found to be present in a triple helix conformation from helix–coil transition studies using Congo Red. The triple helix conformation was disrupted at increasing alkali concentrations. Conformational changes were also observed using phenanthrene as a fluorescent probe, and the fluorescence intensity decreased 80% in the presence of dimethyl sulfoxide. The results confirmed the triple helix conformation of botryosphaeran, an important property manifesting biological response modifying activity.  相似文献   

12.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

13.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

14.
The arabinogalactan (AG) component of the mycobacterial cell wall is an essential branched polysaccharide which tethers mycolic acids (m) to peptidoglycan (P), forming the mAGP complex. Much interest has been focused on the biosynthetic machinery involved in the production of this highly impermeable shield, which is the target for numerous anti-tuberculosis agents. The galactan domain of AG is synthesised via a bifunctional galactofuranosyltransferase (GlfT), which utilises UDP-Galf as its high-energy substrate. However, it has proven difficult to study the protein in its recombinant form due to difficulties in recovering pure soluble protein using standard expression systems. Herein, we describe the effects of glfT co-induction with a range of chaperone proteins, which resulted in an appreciable yield of soluble protein at 5 mg/L after a one-step purification procedure. We have shown that this purified enzyme transfers [14C]Galf to a range of both β(1 → 5) and β(1 → 6) linked digalactofuranosyl neoglycolipid acceptors with a distinct preference for the latter. Ligand binding studies using intrinsic tryptophan fluorescence have provided supporting evidence for the apparent preference of this enzyme to bind the β(1 → 6) disaccharide acceptor. However, we could not detect binding or galactofuranosyltransferase activity with an n-octyl β-d-Gal-(1 → 4)-α-l-Rha acceptor, which mimics the reducing terminus of galactan in the mycobacterial cell wall. Conversely, after an extensive bioinformatics analysis of the H37Rv genome, further cloning, expression and functional analysis of the Rv3792 open reading frame indicates that this protein affords galactofuranosyltransferase activity against such an acceptor and paves the way for a better understanding of galactan biosynthesis in Mycobacterium tuberculosis.  相似文献   

15.
The cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with immunostimulant properties. The standard methodologies described for its extraction involve acid and alkaline washings, which degrade part of its glucose chains and reduce the final yield. In the present study, an optimized methodology for extraction of β-d-glucan from S. cerevisiae cells, involving sonication and enzyme treatment, with a yield of 11.08 ± 0.19%, was developed. The high-purity (1 → 3)(1 → 6)-β-d-glucan was derivatized to carboxymethyl-glucan (CM-G). In vitro tests with CM-G in Chinese hamster epithelial cells (CHO-k1) did not reveal any cytotoxic or genotoxic effects or influences of this molecule on cell viability. The method described here is a convenient alternative for the extraction of (1 → 3)(1 → 6)-β-d-glucan under mild conditions without the generation of wastes that could be potentially harmful to the environment.  相似文献   

16.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

17.
The conformation and dilute solution properties of (2→1)-β-d-fructan in aqueous solution were studied by gel permeation chromatography, low-angle laser light-scattering photometry, viscometry, small-angle X-ray scattering and electron microscopy. Fractions covering a broad range of weight-average molecular weights (Mw) from 1.49 × 104 to 5.29 × 106 were obtained from a native sample by ultrasonic degradation and fractional precipitation. For Mw < 4 × 104, the intrinsic viscosity [η] varies with Mw0.71, indicating that the fructan chain behaves as a random coil expanded by an excluded-volume effect in this molecular weight region. For Mw > 105, [η] exhibits an unusually weak dependence on Mw and finally becomes almost independent of molecular weight. This behaviour is interpreted in terms of a globular conformation of the high-molecular-weight fructan molecules. Small-angle X-ray-scattering measurements and electron microscopic observations support this interpretation of the values of [η] observed.  相似文献   

18.
The (1→4)-β- -glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β- -glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 m , respectively. -Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β- -glucopyranoside (Ki 2.1 μ ), cellobiose (Ki 1.95 μ ), and cellotriose (Ki 7.9 μ ) [cf. -glucose (Ki 1756 μ )]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β- -glucopyranoside appeared to be competitively inhibited by -glucono-1,5-lactone. However, inhibition of hydrolysis by -glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β- -glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β- -glucanase found in the same cellulase, namely, the (1→4)-β- -glucan cellobiohydrolase.  相似文献   

19.
Non-cellulosic β-glucans are now recognized as potent immunological activators, and some are used clinically in China and Japan. These β-glucans consist of a backbone of glucose residues linked by β-(1→3)-glycosidic bonds, often with attached side-chain glucose residues joined by β-(1→6) linkages. The frequency of branching varies. The literature suggests β-glucans are effective in treating diseases like cancer, a range of microbial infections, hypercholesterolaemia, and diabetes. Their mechanisms of action involve them being recognized as non-self molecules, so the immune system is stimulated by their presence. Several receptors have been identified, which include: dectin-1, located on macrophages, which mediates β-glucan activation of phagocytosis and production of cytokines, a response co-ordinated by the toll-like receptor-2. Activated complement receptors on natural killer cells, neutrophils, and lymphocytes, may also be associated with tumour cytotoxicity. Two other receptors, scavenger and lactosylceramide, bind β-glucans and mediate a series of signal pathways leading to immunological activation. Structurally different β-glucans appear to have different affinities toward these receptors and thus generate markedly different host responses. However, the published data are not always easy to interpret as many of the earlier studies used crude β-glucan preparations with, for the most part, unknown chemical structures. Careful choice of β-glucan products is essential if their benefits are to be optimized, and a better understanding of how β-glucans bind to receptors should enable more efficient use of their biological activities.  相似文献   

20.
A large panel of fungal β-N-acetylhexosaminidases was tested for the regioselectivity of the β-GlcNAc transfer onto galacto-type acceptors ( -galactose, lactose, 2-acetamido-2-deoxy- -galactopyranose). A unique, non-reducing disaccharide β- -GlcpNAc-(1→1)-β- -Galp and trisaccharides β- -GlcpNAc-(1→4)-β- -GlcpNAc-(1→1)-β- -Galp, β- -Galp-(1→4)-β- -Glcp-(1→1)-β- -GlcpNAc and β- -Galp-(1→4)-α- -Glcp-(1→1)-β- -GlcpNAc were synthesised under the catalysis of the β-N-acetylhexosaminidase from the Aspergillus flavofurcatis CCF 3061 with -galactose and lactose as acceptors. The use of 2-acetamido-2-deoxy- -galactopyranose as an acceptor with the β-N-acetylhexosaminidases from A. flavofurcatis CCF 3061, A. oryzae CCF 1066 and A. tamarii CCF 1665 afforded only β- -GlcpNAc-(1→6)- -GalpNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号