首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the genotypic changes that lead to expression of a recessive allele at a heterozygous autosomal locus in a human cell line. Mutant clones lacking thymidine kinase activity were derived from a B-cell lymphoblastoid line initially heterozygous at the tk locus, and restriction mapping was performed to detect intragenic structural alterations in the tk gene. In addition, informative molecular markers located elsewhere on chromosome 17 were analysed in order to detect large-scale (multilocus) events. We report that among 325 spontaneous and induced mutants, allele loss was more common than intragenic rearrangements or point mutations; in many cases, loss of heterozygosity appears to have extended well beyond the locus under selection. Cytogenetic analysis of a subset of these mutants showed that expression of the recessive TK-deficient phenotype and the associated loss of heterozygosity for chromosome 17 markers was not typically associated with detectable chromosomal changes.  相似文献   

2.
3.
Ajima J  Umezu K  Maki H 《Mutation research》2002,504(1-2):157-172
The SGS1 gene of Saccharomyces cerevisiae is a member of the RecQ helicase family, which includes the human BLM, WRN and RECQL4 genes responsible for Bloom and Werner's syndrome and Rothmund-Thomson syndrome, respectively. Cells defective in any of these genes exhibit a higher incidence of genome instability. We previously demonstrated that various genetic alterations were detectable as events leading to loss of heterozygosity (LOH) in S. cerevisiae diploid cells, utilizing a hemizygous URA3 marker placed at the center of the right arm of chromosome III. Analyses of chromosome structure in LOH clones by pulse field gel electrophoresis (PFGE) and PCR, coupled with a genetic method, allow identification of genetic alterations leading to the LOH. Such alterations include chromosome loss, chromosomal rearrangements at various locations and intragenic mutation. In this work, we have investigated the LOH events occurring in cells lacking the SGS1 gene. The frequencies of all types of LOH events, excluding intragenic mutation, were increased in sgs1 null mutants as compared to the wild-type cells. Loss of chromosome III and chromosomal rearrangements were increased 13- and 17-fold, respectively. Further classification of the chromosomal rearrangements confirmed that two kinds of events were especially increased in the sgs1 mutants: (1) ectopic recombination between chromosomes, that is, unequal crossing over and translocation (46-fold); and (2) allelic crossing over associated with chromosome loss (40-fold). These findings raise the possibility that the Sgs1 protein is involved in the processing of recombination intermediates as well as in the prevention of recombination repair during chromosome DNA replication. On the other hand, intrachromosomal deletions between MAT and HMR were increased only slightly (2.9-fold) in the sgs1 mutants. These results clearly indicate that defects in the SGS1 gene function lead to an elevated incidence of LOH in multiple ways, including chromosome loss and interchromosomal rearrangements, but not intrachromosomal deletion.  相似文献   

4.
To examine the relationship between gene conversion and reciprocal exchange at an endogenous chromosomal locus, we developed a reversion assay in a thymidine kinase deficient mutant, TX545, derived from the human lymphoblastoid cell line TK6. Selectable revertants of TX545 can be generated through interchromosomal gene conversion at the site of inactivating mutations on each tk allele or by reciprocal exchange that alters the linkage relationships of inactivating polymorphisms within the tk locus. Analysis of loss of heterozygosity (LOH) at intragenic polymorphisms and flanking microsatellite markers was used to initially evaluate allelotypes in TK(+) revertants for patterns associated with either gene conversion or crossing over. The linkage pattern in a subset of convertants was then unambiguously established, even in the event of prereplicative recombinational exchanges, by haplotype analysis of flanking microsatellite loci in tk(-/-) LOH mutants collected from the tk(+/-) parental convertant. Some (7/38; 18%) revertants were attributable to easily discriminated nonrecombinational mechanisms, including suppressor mutations within the tk coding sequence. However, all revertants classified as a recombinational event (28/38; 74%) were attributed to localized gene conversion, representing a highly significant preference (P < 0.0001) over gene conversion with associated reciprocal exchange, which was never observed.  相似文献   

5.
A protocol was designed to measure the forward mutation rate over an entire gene replicated as part of a Moloney murine leukemia virus-based vector. For these studies, the herpes simplex virus thymidine kinase (tk) gene under the control of the spleen necrosis virus U3 promoter was used as target sequence since it allows selection for either the functional or the inactivated gene. Our results indicate that after one round of retroviral replication, the tk gene is inactivated at an average rate of 0.08 per cycle of replication. Southern blotting revealed that the majority of the mutant proviruses resulted from gross rearrangements and that deletions of spleen necrosis virus and tk sequences were the most frequent cause of the gene inactivation. Sequence analysis of the mutant proviruses suggested that homologous as well as nonhomologous recombination was involved in the observed rearrangements. Some mutations consisted of simple deletions, and others consisted of deletions combined with insertions. The frequency at which these mutations occurred during one cycle of retroviral replication provides evidence indicating that Moloney murine leukemia virus-based vectors may undergo genetic rearrangement at high rates. The high rate of rearrangement and its relevance for retrovirus-mediated gene transfer are discussed.  相似文献   

6.
Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate.  相似文献   

7.
Germline mutations of the adenomatous polyposis coli (APC) tumor-suppressor gene result in the hereditary colorectal cancer syndrome familial adenomatous polyposis (FAP). Almost all APC mutations that have been identified are single-nucleotide alterations, small insertions, or small deletions that would truncate the protein product of the gene. No well-characterized intragenic rearrangement of APC has been described, and the prevalence of this type of mutation in FAP patients is not clear. We screened 49 potential FAP families and identified 26 different germline APC mutations in 30 families. Four of these mutations were genomic rearrangements resulting from homologous and nonhomologous recombinations mediated by Alu elements. Two of these four rearrangements were complex, involving deletion and insertion of nucleotides. Of these four rearrangements, one resulted in the deletion of exons 11 and 12 and two others resulted in either complete or partial deletion of exon 14. The fourth rearrangement grossly altered the sequence within intron 14. Although this rearrangement did not affect any coding sequence of APC at the genomic DNA level, it caused inappropriate splicing of exon 14. These rearrangements were initially revealed by analyzing cDNAs and could not have been identified by using mutation detection methods that screened each exon individually. The identification of a rearrangement that did not alter any coding exons yet affected the splicing further underscores the importance of using cDNA for mutation analysis. The identification of four genomic rearrangements among 30 mutations suggests that genomic rearrangements are frequent germline APC mutations.  相似文献   

8.
Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.  相似文献   

9.
We have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments we show that the major proportion (93%) of small-colony (sigma) mutants studied have chromosome 11 rearrangements (the chromosome containing the thymidine kinase gene) while large-colony (lambda) mutants do not have detectable chromosome rearrangements. In addition, we find among the chromosome abnormalities in sigma mutants a significant proportion (34%) with dicentric chromosomes involving chromosome 11. These potentially unstable chromosome rearrangements may help to explain the karyotypic instability and heterogeneity among chromosome 11 aberrations previously noted in sigma mutants when they are analyzed later in their clonal history.  相似文献   

10.
The induction of mutants at the heterozygous tk locus by X radiation was found to be dose-rate dependent in L5178Y-R16 (LY-R16) cells, but very little dose-rate dependence was observed in the case of strain L5178Y-S1 (LY-S1), which is deficient in the repair of DNA double-strand breaks. Induction of mutants by X radiation at the hemizygous hprt locus was dose-rate independent for both strains. These results are in agreement with the hypothesis that the majority of X-radiation-induced TK-/- mutants harbor multilocus deletions caused by the interaction of damaged DNA sites. Repair of DNA lesions during low-dose-rate X irradiation would be expected to reduce the probability of lesion interaction. The results suggest that in contrast to the TK-/- mutants, the majority of mutations at the hprt locus in these strains of L5178Y cells are caused by single lesions subject to dose-rate-independent repair. The vast majority of the TK-/- mutants of strain LY-R16 showed loss of the entire active tk allele, whether the mutants arose spontaneously or were induced by high-dose-rate or low-dose-rate X irradiation. The proportion of TK-/- mutants with multilocus deletions (in which the products of both the tk gene and the closely linked gk gene were inactivated) was higher in the repair-deficient strain LY-S1 than in strain LY-R16. However, even though the mutant frequency decreased with dose rate, the proportion of mutants showing inactivation of both the tk and gk genes increased with a decrease in dose rate. The reason for these apparently conflicting results concerning the effect of DNA repair on the induction of extended lesions is under investigation.  相似文献   

11.
The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus.  相似文献   

12.
A shuttle vector carrying the origin of SV40 replication, the thymidine kinase (tk) gene of herpes simplex virus and the E. coli xanthine guanine phosphoribosyl transferase (gpt) gene has been introduced into human TK- cells. A transformed cell line containing only one stably integrated copy of the shuttle vector was used to study mutations in the introduced tk gene at the molecular level. Without selection for gpt expression, spontaneous TK- mutants arose at a frequency of approximately 10(-4)/generation, and were caused by deletion of plasmid sequences. However, when selection for expression of the gpt gene was applied, the background level of mutations at the tk gene was below 4.10(-6). From this cell line, TK- mutants were obtained after treatment with N-ethyl-N-nitrosourea (ENU). COS fusion appeared to be an efficient method for rescue and amplification of the integrated shuttle vector from the human chromosome. After further amplification and analysis in E. coli, rescued tk genes were easily identified and were shown to be physically unaltered by the rescue procedure. In contrast to rescued tk genes from TK+ cells, those obtained from the ENU-induced TK- mutants were unable to complement thymidine kinase-negative E. coli cells. Two such tk mutations were mapped in E. coli by marker rescue analysis. A GC----AT transition was the cause of both mutations. We show here that plasmid rescue by COS fusion is a reliable system for studying gene mutations in human cells, since no sequence changes occurred in rescued DNA except for the 2 ENU-induced sequence changes.  相似文献   

13.
Mutations in the LIS1 gene may result in severe abnormalities of brain cortical layering known as lissencephaly. Most lissencephaly-causing LIS1 mutations are deletions that encompass the entire gene, therefore the mechanism of the disease is regarded as haploinsufficiency. So far, 13 different intragenic mutations have been reported: one point mutation, H149R; deletion of exon 9, which results in deleted acids Delta301-334; deletion of exon 4, which results in deleted amino acids Delta40-64; 10 mutations resulting in truncated proteins and one predicted to result in extra amino acids. We studied the consequences of the point mutation, deletion mutation and one of the reported truncations. In order to study LIS1 structure function, we introduced an additional point mutation and other truncations in different regions of the protein. The consequences of these mutations to protein folding were studied by gel filtration, sucrose density gradient centrifugation and measuring resistance to trypsin cleavage. On the basis of our results, we suggest that all truncation mutations and lissencephaly-causing point mutations or internal deletion result in a reduction in the amount of correctly folded LIS1 protein.  相似文献   

14.
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.  相似文献   

15.
A mouse L cell line containing the centromeric insertion of herpes thymidine kinase genes (tk) was previously shown to undergo a high frequency of DNA rearrangement at the site of tk insertion. Analysis of TK- revertants had demonstrated that DNA rearrangements were usually associated with DNA deletion and were always mediated by intrachromosomal recombinations. In this study, we further analyzed several TK+ subclones to examine the mode of DNA rearrangements in the absence of negative selection pressure. In two clones, LC2-3F and LC2-3E17, rearrangements were accompanied by DNA amplification and were mediated by intrachromosomal recombination. In subclone LC2-3E17-19, we further detected perturbations in the pattern of centromeric heterochromatization. This was associated with chromosome instability, as evidenced by chromosome breakage at the centromere. The analysis of three other sibling clones, LC2-3, LC2-6 and LC2-15, further suggests that reciprocal recombination events may play a role in such centromeric rearrangements. These results suggest that DNA rearrangements in the centromere may be mediated by a number of different mechanisms, and generally do not affect chromosome stability except when accompanied by changes in the pattern of heterochromatization.  相似文献   

16.
The cytogenetic characterization of the L5178Y TK+/-3.7.2C mouse lymphoma cell line was carried out, utilizing G-banded metaphase chromosomes, to provide a karyotypic basis for the precise delineation of induced rearrangements in TK-/- mutants. Band-pattern measurements were used to construct ideograms which represent the position, number, size and staining intensity of the chromosome bands. The TK+/-3.7.2C cell line has been shown to provide quantitation of forward mutations induced at the autosomal thymidine kinase (TK) locus in this cell line. Chromosome analysis of the TK+/-3.7.2C cell line and derived TK-/- mutants has become important in demonstrating that the TK+/-----TK-/- assay may detect and distinguish between chromosomal events and smaller, perhaps point-mutation, events in mutant colonies.  相似文献   

17.
Aneuploidy is an important contributor to reproductive failure and tumor development. It arises spontaneously or as a result of exposure to aneugenic agents through non-disjunction. Two spindle poisons, colchicine (COL) and vinblastine (VBL) are mutagenic in the mouse lymphoma assay (MLA), a gene mutation assay that targets the heterozygous thymidine kinase (tk) gene on chromosome 11 in mouse lymphoma L5178Y tk+/- 3.7.2c cells. To investigate the mechanisms of spindle poison mutagenesis, we analyzed the COL- and VBL-induced TK mutants at the molecular and cytogenetic level. Loss of heterozygosity (LOH) analysis employing a microsatellite region within the tk locus revealed that almost all mutants had lost the functional tk allele. To determine the extent of the LOH, we further examined LOH mutants for heterozygosity at nine microsatellite loci spanning the entire chromosome 11. Interestingly, every microsatellite marker showed LOH in all COL- and VBL-induced LOH mutants, suggesting that these mutants were generated by loss of the whole chromosome 11 through mitotic non-disjunction. Chromosome painting analysis supported this hypothesis; there were no mutants showing structural changes such as deletions or translocations involving chromosome 11. In contrast, spontaneous TK mutants followed from point mutations, deletions and recombinational events as well as whole chromosome loss. Our present study indicates that spindle poisons induce mutations through mitotic non-disjunction without structural DNA changes and supports a possible mechanism in which a recessive mutation mediated by aneuploidy may develop tumors.  相似文献   

18.
To test the hypothesis that the phenotypic abnormalities seen in cases with apparently balanced chromosomal rearrangements are the result of the presence of cryptic deletions or duplications of chromosomal material near the breakpoints, we analyzed three cases with apparently balanced chromosomal rearrangements and phenotypic abnormalities. We characterized the breakpoints in these cases by using microsatellite analysis by polymerase chain reaction and fluorescence in situ hybridization analysis of yeast artificial chromosome clones selected from the breakpoint regions. Molecular characterization of the translocation breakpoint in patient 1 [46,XY,t(2;6)(p22.2;q23.1)] showed the presence of a 4- to 6-Mb cryptic deletion between markers D6S412 and D6S1705 near the 6q23.1 breakpoint. Molecular characterization of the proximal inversion 7q22.1 breakpoint in patient 2 [46,XY,inv(7)(q22.1q32.1)] revealed the presence of a 4-Mb cryptic deletion between D7S651 and D7S515 markers. No deletion or duplication of chromosomal material was found near the breakpoints in patient 3 [46,XX,t(2;6)(q33.1;p12.2)]. Our study suggests that a systematic molecular study of breakpoints should be carried out in cases with apparently balanced chromosomal rearrangements and phenotypic abnormalities, because cryptic deletions near the breakpoints may explain the phenotypic abnormalities in these cases. Received: 9 March 1998 / Accepted: 24 April 1998  相似文献   

19.
We previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast. These studies involved determining the frequency of large deletions, chromosome rearrangements, and chromosome instability resulting from I-SceI endonuclease-induced DSBs at interstitial and telomeric sites. As an internal control, we also analyzed the frequency of small deletions, which have been shown to be the most common type of mutation resulting from I-SceI-induced DSBs at interstitial sites. The results demonstrate that although the frequency of small deletions is similar at interstitial and telomeric DSBs, the frequency of large deletions and chromosome rearrangements is much greater at telomeric DSBs. DSB-induced chromosome rearrangements at telomeric sites also resulted in prolonged periods of chromosome instability. Telomeric regions in mammalian cells are therefore highly sensitive to DSBs, suggesting that spontaneous or ionizing radiation-induced DSBs at these locations may be responsible for many of the chromosome rearrangements that are associated with human cancer.  相似文献   

20.
Telomere dysfunction increases mutation rate and genomic instability   总被引:27,自引:0,他引:27  
Hackett JA  Feldser DM  Greider CW 《Cell》2001,106(3):275-286
The increased tumor incidence in telomerase null mice suggests that telomere dysfunction induces genetic instability. To test this directly, we examined mutation rate in the absence of telomerase in S. cerevisiae. The mutation rate in the CAN1 gene increased 10- to 100-fold in est1Delta strains as telomeres became dysfunctional. This increased mutation rate resulted from an increased frequency of terminal deletions. Chromosome fusions were recovered from est1Delta strains, suggesting that the terminal deletions may occur by a breakage-fusion-bridge type mechanism. At one locus, chromosomes with terminal deletions gained a new telomere through a Rad52p-dependent, Rad51p-independent process consistent with break-induced replication. At a second locus, more complicated rearrangements involving multiple chromosomes were seen. These data suggest that telomerase can inhibit chromosomal instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号