首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-adapted sporangiophores of the fungus Phycomyces respond to sudden darkening by a temporary decrease in the rate of elongation, after a latent period of several minutes. The reaction time of this "dark growth" response is compound like that of the "light growth" response. It is, moreover, shorter the more intense the previous illumination. The rate of dark adaptation following adaptation to a very large range of light intensities is found to be proportional to the logarithm of the preceding light intensity. It is shown that a constant amount of dark adaptation takes place before the response occurs. On the assumption that changes in the rate of growth reflect changes in the concentration of a substance which at constant light intensity is in equilibrium with a light-sensitive material, possible equations for such a photostationary state are examined. The most reasonable formulation requires that the partial velocity of the "light" reaction be taken proportional to log I instead of to I directly.  相似文献   

2.
First internodes of light-grown bean seedlings exposed to supplementary red and far-red light and those of dark-grown seedlings were sectioned and studied to determine the effects of irradiation on the cellular components of polarized growth. Cell counts and measurements of epidermis, cortex, and pith are given. Increased length of internodes of far-red-treated plants was caused by both increased rate and increased duration of cell elongation. The effect of far-red light is interpreted as a reversal of the accelerating effect of light upon cell maturation. It is suggested that investigations of the mechanism of the red, far-red response of stems be concerned with the processes involved in cell elongation. In darkness, rate and duration of cell division as well as rate and duration of cell elongation were greater than in any of the irradiated plants, indicating that only part of the photocontrol of stem elongation is mediated through the red, far-red system.  相似文献   

3.
Mature stage IVb Phycomyces sporangiophores show left-hand spiral growth; that is, viewed from above, the sporangium rotates clockwise. It has been shown that mechanical conditioning (strain-hardening) of the cell wall by the Instron technique increases the ratio of rotation to the elongation growth rate compared to nonmechanically conditioned controls. It is reported that the addition of a saturating light stimulus to these sporangiophores causes a decrease in the ratio of rotation to elongation growth rate. This result is in agreement with the fibril slippage model, i.e. the counterclockwise rotation of stage IVa is a result of parallel fibrils lying in a right-handed spiral configuration slipping by one another. It is suggested that a light stimulus added to a mechanically conditioned stage IVb sporangiophore activates one or more cell wall-loosening enzymes which act by decreasing the number of intermolecular bonds between parallel fibrils causing fibril slippage, resulting in counterclockwise rotation. It is precisely this counterclockwise contribution that decreases the rotation to elongation growth ratio of mechanically conditioned and then light-stimulated stage IVb sporangiophores.  相似文献   

4.
1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation.  相似文献   

5.
Tukey , H. B., Jr ., and H. J. Ketellapper . (California Inst. Tech., Pasadena.) Length of the light-dark cycle and plant growth. Amer. Jour. Bot. 50(2): 110–115. Illus. 1963.—It has been shown that the length of the light-dark cycle which causes maximal growth of tomato, pea, peanut, and soybean plants is close to 24 hr for cycles consisting of equal periods of light and darkness. The exact optimum for tomato plants was determined by temperature; the optimal cycle length was 20 hr at 30 C and 27–30 hr at 14 C. Such an interaction between temperature and cycle length was not found in pea plants, because peas were less sensitive to cycle length than peanuts, tomatoes, and soybeans and did not respond to changes in cycle length of 2–3 hr. The response to cycle length was not influenced by the conditions in which the seedlings had been raised prior to the treatment. Seedlings raised in a 16-hr light, 8-hr dark regime responded in the same manner as those raised in continuous light. The response to cycle lengths of 18, 24, 36, and 48 hr was not changed qualitatively by the temperature during the growth determination. Small changes in cycle length had no characteristic effects on the rates of photosynthesis, respiration or stem elongation. Stem elongation showed a rapid and initial increase in rate when the light was turned off. It was concluded that plants possess an endogenous time-measuring device with a period of 24 hr. For maximal growth to occur the external periodicity must be synchronized with the endogenous period of the plant. Efforts to obtain direct evidence for this hypothesis were not successful since no overt rhythms could be found in tomato plants.  相似文献   

6.
1. With constant temperature and light intensity, the rate of elongation of a sporangiophore of Phycomyces is constant for many hours. 2. With constant light intensity, values of µ, the "critical thermal increment," have been computed for the elongation of different sporangiophores. These values group themselves closely about the modes 11,000, 16,000, 20,000, 26,000, and 33,000 calories. Sporangiophores from the same culture need not have similar increments. 3. The significance of these results for studies of growth is discussed.  相似文献   

7.
Corolla elongation and the roles of plant hormones in this process in Gaillardia grandiflora Van Houtte ray flowers were examined. The sterile ray flowers elongated during a 2-day period, and corolla growth was accompanied by fresh and dry weight increases and epidermal cell elongation (greatest near the base of the corolla) but not by cell division. Corollas excised from young ray flowers were measured during treatment in vitro with solutions of plant growth regulators. They elongated in response to gibberellins and fusicoccin but did not respond to auxins, cytokinins, abscisic acid, ethylene, or inhibitors of ethylene biosynthesis. Sequential and simultaneous hormone applications indicated no additive or synergistic effects between hormones, but auxin did reduce gibberellin-promoted growth. Analyses of endogenous auxins showed no significant variation, and ethylene production decreased prior to elongation, while a 20-fold increase in endogenous gibberellin activity was observed just prior to rapid corolla elongation. It appears that corolla growth in Gaillardia is accomplished by an increase in gibberellin activity alone, that multiple hormone interactions are not important in the control of corolla growth, and that part of the mode of action of gibberellin is acid-induced growth.  相似文献   

8.
Periodic cell divisions were induced in gametophytes of Pteridium aquilinum by daily irradiation with white light. In white-dark cycles, the rate of cell division was promoted by increased time in white light; cell elongation was not affected. The time of transition to two-dimensional growth (days to 5% 2-D) was closely associated with the mitotic rate. For white-red cycles, the rate of elongation was controlled by the intensity of red light (wavelengths over 550 nm). This increased elongation delayed the initiation of 2-D development. In both cases the rate of transition to 2-D growth was correlated with the amount of elongation per division.  相似文献   

9.
Gametophytes of Pteridium aquilinum can be maintained in red light as either 1- or 2-dimensional structures. The mode of growth realized in red light is dependent upon the activity of the meristem. An active meristem in a 2-dimensional structure will permit a continued development of that structure. A breakdown in meristematic activity results in filament formation. It is suggested that a group of actively dividing cells in some manner inhibits cell elongation and thus prevents filament formation in red light.  相似文献   

10.
Germinating spores of the fern Onoclea sensibilis L. were grown in darkness, so that they developed as filaments (protonemata). Brief daily exposure of the filaments to red, far-red or blue light increased the rate of filament elongation. Filament elongation was also promoted by indoleacetic acid. When filament elongation was promoted with both indoleacetic acid and exposure to light, the growth promotions caused by red and far-red light were additive to auxin-induced growth. Blue light promoted elongation only at sub-optimal concentrations of auxin. Elongation induced by guanine was additive to red- and far-red-induced elongation. Gibberellic acid had no effect on elongation under any condition. Blue-light-induced elongation resembled auxin-induced elongation in its requirement for exogenous sucrose and sensitivity to inhibition by parachlorophenoxyisobutyric acid. Red and far-red light were active regardless of the presence or absence of sucrose and promoted elongation at a concentration of parachlorophenoxyisobutyric acid which completely inhibited blue-light-induced elongation.  相似文献   

11.
12.
1. Sections of Avena coleoptiles are found to show a considerable elongation when suspended in solutions of growth substance. 2. This elongation does not take place in the absence of O2 and is inhibited by KCN and phenylurethane. 3. The rate of respiration of sections of coleoptiles is increased by the addition of growth substance in concentrations which cause growth. High concentrations of growth substance inhibit growth and also respiration. 4. The increase in respiration is inhibited by KCN and phenylurethane in the concentrations which inhibit normal respiration. These concentrations are the same as those which inhibit growth. 5. From 2, 3, and 4, it seems possible that the increase in respiration caused by growth substance may be an essential part of its action in growth.  相似文献   

13.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.  相似文献   

14.
1. Chemical examination of the cell sap of Nitella showed that the concentrations of all the principal inorganic elements, K, SO4, Ca, Mg, PO4, Cl, and Na, were very much higher than in the water in which the plants were growing. 2. Conductivity measurements and other considerations lead to the conclusion that all or nearly all of the inorganic elements present in the cell sap exist in ionic state. 3. The insoluble or combined elements found in the cell wall or protoplasm included Ca, Mg, S, Si, Fe, and Al. No potassium was present in insoluble form. Calcium was predominant. 4. The hydrogen ion concentration of healthy cells was found to be approximately constant, at pH 5.2. This value was not changed even when the outside solution varied from pH 5.0 to 9.0. 5. The penetration of NO3 ion into the cell sap from dilute solutions was definitely influenced by the hydrogen ion concentration of the solution. Penetration was much more rapid from a slightly acid solution than from an alkaline one. It is possible that the NO3 forms a combination with some constituent of the cell wall or of the protoplasm. 6. The exosmosis of chlorine from Nitella cells was found to be a delicate test for injury or altered permeability. 7. Dilute solutions of ammonium salts caused the reaction of the cell sap to increase its pH value. This change was accompanied by injury and exosmosis of chlorine. 8. Apparently the penetration of ions into the cell may take place from a solution of low concentration into a solution of higher concentration. 9. Various comparisons with higher plants are drawn, with reference to buffer systems, solubility of potassium, removal of nitrate from solution, etc.  相似文献   

15.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

16.
Filaments of Fuchsia hybrida cv “Brilliant” double in length within 24 hr after bud opening. Filament growth characterized by fresh wt increase and cell elongation was significantly inhibited in vitro by l-aminocyclopropane-l-carboxylic acid (ACC) but was not promoted by any growth regulator tested. Ions of Co2+ blocked the inhibitive effects of ACC in vitro suggesting that ethylene produced from ACC is the growth inhibiting substance. Ethylene levels surrounding the filaments within the closed bud decreased during development, and premature opening of the sepals which released the ethylene into the atmosphere resulted in rapid filament growth. The ACC levels were found to be much higher in the anthers than the filaments. This suggests that ethylene produced from floral organs other than filaments regulates filament elongation in Fuchsia. This is the first report of filament growth which cannot be promoted by application of growth regulators but which is inhibited by ethylene.  相似文献   

17.
Style and stigma elongation and stigma unfolding, and the roles of plant hormones in these processes in Gaillardia grandiflora Van Houtte were investigated. Style and stigma elongation in vivo began just after anthesis, and style elongation was accompanied by epidermal cell elongation (greatest near the stigma) and a fresh weight increase, but not by cell division or a dry weight increase. The stigma unfolded after the style and stigma elongated. Style-stigma units excised from young disc flowers of this composite were measured as they responded to plant growth regulators applied singly, as well as in sequential and simultaneous combinations, in vitro. Style elongation was promoted by auxin, was inhibited by gibberellins and ethylene, and was unaffected by other growth regulators. Stigma elongation followed a similar pattern of response. Endogenous auxin levels and ethylene production showed parallel variation and endogenous gibberellin levels showed inverse variation with style and stigma elongation. Stigma unfolding was more sensitive to auxin applications and was promoted by applied ethylene. Ethylene production showed parallel variation and endogenous auxin levels showed inverse variation with stigma unfolding. AVG and Co2+ applications decreased auxin-induced style elongation and fusicoccin promoted all of the growth responses of style-stigma units in vitro. A gibberellin-auxin-ethylene-acid growth interaction mode of control is proposed for these three growth processes.  相似文献   

18.
1. Evidence has accumulated that the action of auxins in promoting growth is exerted not upon the cell wall but upon the cell contents; i.e., the protoplasm. Following indications previously obtained, therefore, the effect of auxins on the rate of protoplasm streaming in the Avena coleoptile was studied. 2. Indole-3-acetic acid, the most active auxin available in pure form, was found to increase the rate of streaming in the epidermal cells of the Avena coleoptile at concentrations between 0.5 and 0.002 mg. per liter, the maximum increase being brought about at 0.01 mg. per liter. This concentration is approximately that which, applied in agar to one side of the decapitated coleoptile, would give a curvature of 1°; i.e., it is well within the range of concentrations active in growth promotion. It is, however, much less than that which produces maximum elongation in immersed sections of Avena coleoptiles. 3. This accelerating effect is readily determined quantitatively by comparison with the streaming in control coleoptiles in pure water, which, if thoroughly aerated, maintain a constant rate for over an hour. The accelerating effect takes place immediately and is over within about 30 minutes. 4. Concentrations of indole-3-acetic acid greater than 0.5 mg.per liter inhibit the streaming, the effect being also over in about 30 minutes, and its extent increasing with increasing auxin concentration. This parallels the effect of high auxin concentrations in inhibiting elongation, although the inhibition of streaming is obtained at much lower concentrations than inhibit elongation. 5. The effects of indole-3-acetic acid on streaming are not specific for that substance, but appear to be common to auxins in general. Thus coumaryl-3-acetic acid and allocinnamic acid, both of which bring about cell enlargement, root formation, and bud inhibition, i.e. are typical auxins, also cause an immediate acceleration of the rate of streaming, and as with indole-acetic add the effect is over in about 30 minutes. The concentrations of these two substances which produce the maximum effect are about ten times that of indole-acetic acid, which approximately corresponds with their relative auxin activities. The curves relating concentrations of these substances to their effects on streaming are very similar to that for indole-acetic acid. 6. On the other hand, certain substances which are known to affect streaming in other materials do not produce any effect comparable to that of auxin. Ethylene chlorhydrin, histidine, and urea in all concentrations were without effect on streaming in the Avena coleoptile within the first 30 minutes of treatment. 7. The effects produced by the auxins were not due to pH. 8. The action on streaming here studied is evidently quite different from the re-starting of streaming after its cessation, studied by Fitting in Vallisneria. Correspondingly histidine, which in Fitting''s experiments showed activity down to 10–7 M, is inactive here. 9. Per contra, the effect of auxin here studied is on normal streaming. It takes place immediately and at concentrations in the same range as those which produce growth. The curve of effect against concentration parallels that for growth although the actual concentration values differ. It is therefore reasonable to suppose that the effect of auxin on streaming is closely connected with one of the first stages of its effect on the growth process.  相似文献   

19.
The morphological and cellular basis of anoxic germination in Echinochloa crus-galli var. oryzicola is reported. The embryo of E. crus-galli var. oryzicola is typically panicoid in its overall morphology, and is relatively large with a prominent coleoptile and mesocotyl. The response to anoxia is essentially the same in light and dark. Shoot growth occurs in both mesocotyl and coleoptile by cell elongation with no cell division. There is no emergence of the radicle without oxygen. Under anoxia the growth response is not the same as etiolation; there is no plumule elongation within the coleoptile, no protochlorophyll(ide) is found, and limited mesocotyl elongation occurs without oxygen. Air-dark treatment after anoxic germination results in a typical etiolated morphological response, including a resumption of mesocotyl growth, elongation of the plumule within the coleoptile, and initiation of pigment synthesis. These results indicate the effects of anoxia are not permanent but rather limiting and reversible.  相似文献   

20.
1. The time course of germination of Grand Rapids lettuce seedshas heen followed with different combinations of temperature(3°–35°) and irradiation (red or far-red light).For each set of conditions the following three parameters weredetermined: (i) the time required for half maximum germination,(ii) the rate of germination during the actively germinatingphase, and (iii) the maximum germination attained. In general,as the temperature was lowered, with dark-imbibed seeds, (i)became longer, (ii) became lower, but (iii) became progressivelyhigher. The effect of red light at any temperature was to shorten(i) and increase (ii) and (iii) over the values dark controls.Far-red light exerted an effect opposite to that of red light.Temperatures higher than 25° inhibited (ii) and (iii) underany light conditions. The optimum temperature to the actionof red and far-red light is 25°, at which the stimulatoryeffect of red light and the inhibition of this effect by far-redlight are both maximal. 2. The growth of the radicles of de-coated seeds of Grand Rapidslettuce shows two phases at all temperatures studied. PhaseI is characterized by slow but linear growth which continuesuntil shortly after visible differentiation of the radicle intothe hypocotyl and the root. Phase II is a phase of active growthin which the total length reflects mainly the length of theroot. The optimum temperature for Phase I is 25°-35°,and that, for Phase II is 25°. In neither phase, and atnone of the temperatures studied, is there any effect of redor far-red radiation on the growth of the radicle. The firstvisible sign of radicle elongation in red light induced seeds,however, takes place at exactly the same time as that of germination. 3. Similarities and dissimilarities between the germinationand the growth are pointed out, and it is concluded that thetwo phenomena are different, but proceed at sites closely associatedin the embryo. 1Present address: Johnson Foundation for Medical Physics, Universityof Pennsylvania, Philadelphia, Pa., U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号