首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, ethanolic extracts of ten cyanobacterial strains cultivated under different nitrogen conditions were assessed for the phenolic content and antioxidant activity. The amount of detected phenolic compounds ranged from 14.86 to 701.69 μg g?1 dry weight (dw) and HPLC-MS/MS analysis revealed gallic acid, chlorogenic acid, quinic acid, catechin, epicatechin, kaempferol, rutin and apiin. Only catechin, among the detected phenolics, was present in all the tested strains, while quinic acid was the most dominant compound in all the tested Nostoc strains. The results also indicated the possibility of increasing the phenolic content in cyanobacterial biomass by manipulating nitrogen conditions, such as in the case of quinic acid in Nostoc 2S7B from 70.83 to 594.43 μg g?1 dw. The highest radical scavenging activity in DPPH assay expressed Nostoc LC1B with IC50 value of 0.04?±?0.01 mg mL?1, while Nostoc 2S3B with IC50 =?9.47?±?3.61 mg mL?1 was the least potent. Furthermore, the reducing power determined by FRAP assay ranged from 8.36?±?0.08 to 21.01?±?1.66 mg AAE g?1, and it was significantly different among the tested genera. The Arthrospira strains exhibited the highest activity, which in the case of Arthrospira S1 was approximately twofold higher in comparison to those in nitrogen-fixing strains. In addition to this, statistical analysis has indicated that detected phenolics were not major contributor to antioxidant capacities of tested cyanobacteria. However, this study highlights cyanobacteria of the genera Nostoc, Anabaena, and Arthrospira as producers of antioxidants and phenolics with pharmacological and health-beneficial effects, i.e., quinic acid and catechin in particular.  相似文献   

2.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

3.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

4.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

5.
In vitro propagation methods using seeds and nodal segments of a 21-year old Couroupita guianensis - a medicinally important but threatened tree have been developed. Hundred percent of the seeds germinated on half strength Murashige and Skoog (MS) medium with 2.0 mg l?1 indole-3 butyric acid (IBA). Nodal segments were found most suitable for the establishment of cultures. About 90 % explants responded and 4.1 ± 0.23 shoots per node were induced after five weeks of inoculation on MS medium +4.0 mg l?1 6-benzylaminopurine (BAP). Further shoot multiplication was achieved by repeated transfer of mother explants and subculturing of in vitro produced shoots on fresh medium. Maximum number (8.2 ± 0.17) of shoots were regenerated on MS medium with 1.0 mg l?1 each of BAP and Kinetin (Kin) + 0.5 mg l?1 α-naphthalene acetic acid (NAA) with additives (50 mg l?1 of ascorbic acid and 25 mg l?1 each of adenine sulphate, L-arginine and citric acid). The multiplied shoots rooted (4.3 ± 0.26 roots/shoot) on half strength MS medium with 2.5 mg l?1 IBA. All the shoots were rooted ex vitro when pulse treated with 400 mg l?1 of IBA for five min with an average of 7.3 ± 0.23 roots per shoot. Nearly 86 % of these plantlets were acclimatized within 7–8 weeks and successfully transferred in the field. Biologically significant developmental changes were observed during acclimation particularly in leaf micromorphology in terms of changes in stomata, veins and vein-islets, and trichomes. This study helps in understanding the response by the plants towards outer environmental conditions during acclimatization. This is the first report on micropropagation of C. guianensis, which could be used for the large-scale multiplication, restoration and conservation of germplasm of this threatened and medicinally important tree.  相似文献   

6.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

7.
Asparagus macrorrhizus: is a new species, which has been recently described. It is limited to the area surrounding the “Mar Menor” lagoon, in Murcia (Spain), and is the only “Critically Endangered” species of the genus Asparagus. Despite being protected, the number of plants has decreased in the last years due to the urbanization of its natural habitat. This species is a valuable genetic resource for asparagus breeding because of its special characteristics. So, the development of a micropropagation protocol is crucial to its conservation and use in breeding programs. The micropropagation protocol from asparagus rhizome buds previously developed by our research group has been adapted for A. macrorrhizus. Rhizome buds of A. macrorrhizus were extracted, disinfected, and then cultured on Asparagus Rhizome Bud Medium (ARBM) consisting of MS medium supplemented with 0.3 mg l??1 NAA, 0.1 mg l??1 KIN, 2 mg l??1 ancymidol and 6% sucrose. A percentage of 69.7?±?8.0% of the rhizome buds developed shoots, but only 17.4?±?7.9% of them rooted. To increase this low rooting rate, the shoots were cultured on Macrorrhizus Rooting Media (MRM) supplemented with three different concentrations of IBA. The highest rooting rate (55.0?±?7.9%) was reached when shoots were incubated in MRM-2 consisting of MS medium supplemented with 2 mg l??1 IBA and 4% sucrose. The acclimatization rate of the micropropagated plantlets was 90%. The method developed in this study allows the micropropagation of A. macrorrhizus, offering a new option to preserve this almost extinct species.  相似文献   

8.

Objectives

To evaluate the effects of 12 biotic and abiotic elicitors for increasing the production of plumbagin in Plumbago indica root cultures.

Results

Most elicitors showed minimal effects on the root dry weight, except for 250 mg chitosan l?1 and 10 mM l-alanine that markedly decreased root biomass by about 40 % compared to the untreated root cultures (5 g l?1). Treatments with 100 µM AgNO3 significantly increased intracellular plumbagin production by up to 7.6 mg g?1 DW that was 4-fold more than the untreated root cultures (1.9 mg g?1 DW). In contrast, treatments with 150 mg chitosan l?1, 5 mM l-alanine, and 50 µM 1-naphthol significantly enhanced the extracellular secretion of plumbagin by up to 10.6, 6.9, and 5.7 mg g?1 DW, respectively, and increased the overall production of plumbagin by up to 12.5, 12.5, and 9.4 mg g?1 DW, respectively.

Conclusions

Chitosan (150 mg l?1), l-alanine (5 mM), and 1-naphthol (50 µM) were the best elicitors to enhance plumbagin production in P. indica root cultures.
  相似文献   

9.
An efficient transformation system for high-throughput functional genomic studies of kiwifruit has been developed to overcome the problem of necrosis in Actinidia arguta explants. The system uses Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pART27-10 to inoculate leaf strips. The vector contains neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) (uidA) genes. A range of light intensities and different strengths of Murashige and Skoog (MS) basal salt media was used to overcome the problem of browning and/or necrosis of explants and calli. Callus browning was significantly reduced, resulting in regenerated adventitious shoots when the MS basal salt concentration in the culture medium was reduced to half-strength at low light intensity (3.4 μmol m?2 s?1) conditions. Inoculated leaf strips produced putative transformed shoots of Actinidia arguta on half-MS basal salt medium supplemented with 3.0 mg l?1 zeatin, 0.5 mg l?1 6-benzyladenine, 0.05 mg l?1 naphthalene acetic acid, 150 mg l?1 kanamycin and 300 mg l?1 Timentin®. All regenerated plantlets were deemed putative transgenic by histochemical GUS assay and polymerase chain-reaction analysis.  相似文献   

10.
The aim of this work was to evaluate the effects of co-inoculation with phosphate-solubilizing and nitrogen-fixing rhizobacteria on growth promotion, yield, and nutrient uptake by wheat. Out of twenty-five bacteria isolated from the rhizosphere soils of cereal, vegetable, and agro-forestry plants in eastern Uttar Pradesh, three superior most plant growth-promoting (PGP) isolates were characterized as Serratia marcescens, Microbacterium arborescens, and Enterobacter sp. based on their biochemical and 16S rDNA gene sequencing data and selected them for evaluating their PGP effects on growth and yield of wheat. Among them, Enterobacter sp. and M. arborescens fixed significantly higher amounts (9.32?±?0.57 and 8.89?±?0.58 mg Ng?1 carbon oxidized, respectively) of atmospheric nitrogen and produced higher amounts (27.06?±?1.70 and 26.82?±?1.63 TP 100 µg mL?1, respectively) of IAA in vitro compared to S. marcescens (8.32?±?0.39 mg Ng?1 carbon oxidized and 21.29?±?0.99 TP 100 µg mL?1). Although both M. arborescens and S. marcescens solubilized remarkable amounts of phosphate from tricalcium phosphate likely through production of organic acids, however, Enterobacter sp. was inactive. The effects of these three rhizobacteria were evaluated on wheat in alluvial soils of the Indo-Gangetic Plain by inoculation of plants with bacterial isolates either alone or in combinations in both pot and field conditions for two successive years. Rhizobacterial inoculation either alone or in consortium of varying combinations significantly (P?≤?0.05) increased growth and yield of wheat compared to mock inoculated controls. A consortium of two or three rhizobacterial isolates also significantly increased plant height, straw yield, grain yield, and test weight of wheat in both pot and field trials compared to single application of any of these isolates. Among the rhizobacterial treatment, co-inoculation of three rhizobacteria (Enterobacter, M. arborescens and S. marcescens) performed best in promotion of growth, yield, and nutrient (N, P, Cu, Zn, Mn, and Fe) uptake by wheat. Taken together, our results suggest that co-inoculation of Enterobacter with S. marcescens and M. arborescens could be used for preparation of an effective formulation of PGP consortium for eco-friendly and sustainable production of wheat.  相似文献   

11.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

12.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

13.
Coupling of biodegradable corncob and plastic carrier was optimized in continuous-flow solid-phase denitrification systems for enhancing simultaneously removal of nitrogen and organics in agricultural runoff. In compared with preposition of plastic carriers and mixed distribution method, it was demonstrated that the preposition of corncobs simultaneously enhanced nitrate (6.64 ± 1.35 mg L?1 day ?1) and organics removal (6.33 ± 1.44 mg L?1 day?1) at a hydraulic retention time (HRT) of 6 h. The operation performance could be further enhanced with extension of HRT to 12 h. The dominant genera found in corncob were denitrifiers for nitrate reduction (Bosea, Simplicispira, Desulfovibrio, Klebsiella, etc.) and fermentative bacteria (Pleomorphomonas, Actinotalea, Opitutus, Cellulomonas, Bacteroides, etc.) responsible for corncob degrading to simple organics for other denitrifiers. However, much lower and different denitrifiers abundances (Bradyrhizobium, Acinetobacter, Bacillus, etc.) exhibited on plastic filler than those of corncob. It well explained that the biofilm on plastic carrier was mainly related with organics removal while the biofilm on corncobs inclined to effectively remove nitrate, and simultaneous removal of nitrogen and organics could be achieved in coupling carriers system with preposition of biodegradable corncob.  相似文献   

14.
Inheritance pattern of wood traits viz. specific gravity, fibre dimensions and fibre-derived biometrical indices and their interactions among themselves and with that of growth are reported in Hevea brasiliensis. Girth (h2 =???0.02?±?0.44 to h2 =?0.35?±?0.24) showed moderate genetic control. Among wood traits, specific gravity (h2?=?0.15?±?0.31 to h2 =?0.33?±?0.28) was found to be under moderate genetic control. Fibre traits viz., fibre length (h2 =???0.26?±?0.30 to h2 =?0.50?±?0.34), fibre diameter (h2 =?0.19?±?0.49 to h2 =?0.70?±?0.11), fibre lumen diameter (h2 =???0.18?±?0.35 to h2 =?0.56?±?0.47) and fibre wall thickness (h2 =???5.17?±?5.26 to h2 =?0.50?±?0.50) were under moderate to strong genetic control. Among fibre-derived indices, flexibility coefficient (h2 =?0.48?±?0.21 to h2 =?0.89?±?0.29) showed moderate to very strong genetic control. The Runkel ratio (h2 =???0.40?±?0.27 to h2 =?0.42?±?0.29) and slenderness ratio (h2 =???0.36?±?0.29 to h2 =?0.43?±?0.28) showed moderate genetic control. Girth showed very strong positive genetic correlation with fibre wall thickness and strong positive correlation with fibre width indicating scope of indirect selection potential for these traits. Wood specific gravity was not correlated with either girth or fibre traits. Hence, it would be possible to concomitantly improve growth and fibre traits without adversely affecting wood specific gravity. Moderate to very high estimates of heritability for fibre traits, girth and specific gravity indicated that considerable genetic gain can be realised for these traits. Implications of the above findings in genetic improvement of wood in Hevea are discussed.  相似文献   

15.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   

16.
17.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

18.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

19.
Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50–70 mg l?1 of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l?1), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24–48 mg l?1). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14–34 mg l?1). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.  相似文献   

20.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号