首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases. [BMB Reports 2014; 47(3): 135-140]  相似文献   

2.
Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering.  相似文献   

3.
In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.  相似文献   

4.
Since stem cells can differentiate into hepatocyte, stem cell-based therapy becomes a potential alternative treatment for terminal liver diseases. However, an appropriate source of human mesenchymal stem cells (hMSCs) for hepatocytes has not yet been clearly elucidated. The aim of the present study was to investigate the in vitro biological characterization and hepatic differentiation potential of human amniotic fluid-derived mesenchymal stem cells (AF-hMSCs) and human bone marrow-derived mesenchymal stem cells (BM-hMSCs). Our results show that AF-hMSCs possess higher proliferation and self-renewal capacity than BM-hMSCs. Cytogenetic studies indicate that AF-hMSCs are as genetically stabile as BM-hMSCs. Following incubation with specific hepatogenic agents, AF-hMSCs showed a higher hepatic differentiation potential than BM-hMSCs. Expression of several liver-specific markers was significantly greater in AF-hMSCs than in BM-hMSCs, as shown by real time RT-PCR and immunofluorescence (IF). In conclusion, AF-hMSCs possess superior potential for hepatic differentiation, making them more suitable for diverse terminal liver diseases.  相似文献   

5.
Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is inexpensive, secondly abundant stem cells can be obtained and finally, these stem cell sources are free from ethical considerations. Many studies have demonstrated the differentiation potential in vitro and in vivo toward mesenchymal and non-mesenchymal cell types; in addition the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. This review offers an overview on markers characterisation and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.  相似文献   

6.
7.
Recent evidence has shown that amniotic fluid may be a novel source of fetal stem cells for therapeutic transplantation. We previously developed a two-stage culture protocol to isolate a population of amniotic fluid-derived mesenchymal stem cells (AFMSCs) from second-trimester amniocentesis. AFMSCs maintain the capacity to differentiate into multiple mesenchymal lineages and neuron-like cells. It is unclear whether amniotic fluid contains heterogeneous populations of stem cells or a subpopulation of primitive stem cells that are similar to marrow stromal cells showing the behavior of neural progenitors. In this study, we showed a subpopulation of amniotic fluid-derived stem cells (AF-SCs) at the single-cell level by limiting dilution. We found that NANOG- and POU5F1 (also known as OCT4)-expressing cells still existed in the expanded single cell-derived AF-SCs. Aside from the common mesenchymal characteristics, these clonal AF-SCs also exhibit multiple phenotypes of neural-derived cells such as NES, TUBB3, NEFH, NEUNA60, GALC, and GFAP expressions both before and after neural induction. Most importantly, HPLC analysis showed the evidence of dopamine release in the extract of dopaminergic-induced clonal AF-SCs. The results of this study suggest that besides being an easily accessible and expandable source of fetal stem cells, amniotic fluid will provide a promising source of neural progenitor cells that may be used in future cellular therapies for neurodegenerative diseases and nervous system injuries.  相似文献   

8.
Regenerative medicine, based on the use of stem cells, scaffolds and growth factors, has the potential to be a good approach for restoring damaged tissues of the central nervous system. This study investigated the use of human amniotic mesenchymal stem cells (hAMSC), human amniotic epithelial stem cells (hAESC), and human Wharton’s jelly mesenchymal stem cells (hWJMSC) derived from human umbilical cord as a source of stem cells, and the potential of the human amniotic membrane (HAM) as a scaffold and/or source of growth factors to promote nerve regeneration. The hAMSC and hAESC obtained from HAM and the hWJMSC from umbilical cords were cultured in induction medium to obtain neural-like cells. The morphological differentiation of hAMSC, hAESC and hWJMSC into neural-like cells was evident after 4–5 days, when they acquired an elongated and multipolar shape, and at 21 days, when they expressed neural and glial markers. On other way, the HAM was completely decellularized without affecting the components of the basement membrane or the matrix. Subsequently, hAMSC, hAESC and hWJMSC differentiated into neural-like cells were seeded onto the decellularized HAM, maintaining their morphology. Finally, conditioned media from the HAM allowed proliferation of hAMSC, hAESC and hWJMSC differentiated to neural-like cells. Both HAM and umbilical cord are biomaterials with great potential for use in regenerative medicine for the treatment of neurodegenerative diseases.  相似文献   

9.
Although human amnion derived mesenchymal stem cells (AMSC) are a promising source of stem cells, their therapeutic potential for traumatic brain injury (TBI) has not been widely investigated. In this study, we evaluated the therapeutic potential of AMSC using a rat TBI model. AMSC were isolated from human amniotic membrane and characterized by flow cytometry. After induction, AMSC differentiated in vitro into neural stem-like cells (AM-NSC) that expressed higher levels of the neural stem cell markers, nestin, sox2 and musashi, in comparison to undifferentiated AMSC. Interestingly, the neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT-3), glial cell derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) were markedly upregulated after neural stem cell induction. Following transplantation in a rat TBI model, significant improvements in neurological function, brain tissue morphology, and higher levels of BDNF, NGF, NT-3, GDNF and CNTF, were observed in the AM-NSC group compared with the AMSC and Matrigel groups. However, few grafted cells survived with minimal differentiation into neural-like cells. Together, our results suggest that transplantation of AM-NSC promotes functional rehabilitation of rats with TBI, with enhanced expression of neurotrophic factors a likely mechanistic pathway.  相似文献   

10.
The adipose tissue-derived mesenchymal stem cells (ADMSCs) are extensively utilized in tissue engineering, regenerative medicine and cell therapy. ADMSCs can differentiate into cardiomyocytes, and it has been shown that over-expression of a cocktail of factors can induce ectopic heart formation and program cardiogenesis in ESCs. However, which genes are responsible for differentiation of ADMSCs into beating cardiomyocyte-like cells remains unknown. In this study we have shown that the combination of Gata4, Tbx5 and Baf60c is sufficient for inducing ADMSCs to form cardiomyocytes. It also appears that, while Gata4 and Baf60c are key inducers of myocardial differentiation, Tbx5 is essential for the ability of cardiac cells to contract. These findings provide additional experimental references for myocardial tissue engineering in the emerging field of cell-based therapy of heart diseases.  相似文献   

11.
Stem cells present an important tool in livestock assisted reproduction and veterinary therapeutic field such as tissue engineering. We report for the first time isolation of pluripotent stem cell-like cells expressing pluripotency markers (alkaline phospahatase, OCT-4, NANOG and SOX-2) from the amnion of water buffalo (Bubalus bubalis). The cells showed no apparent abnormalities in their chromosomal profiles before and after cryopreservation. The cytochemical staining revealed that pluripotent cells were capable of undergoing directed differentiation in vitro into osteocytes. It could be inferred that amnion-derived pluripotent stem cell-like cells can be isolated, cultured for many passages and differentiated into mesoderm lineage, and may be an alternative source to mesenchymal stem cells. These cells can have applications in assisted reproduction, developmental biological and regenerative medicine.  相似文献   

12.
Regenerating human tooth ex vivo and biological repair of dental caries are hampered by non-viable odontogenic stem cells that can regenerate different tooth components. Odontoma is a developmental dental anomaly that may contain putative post-natal stem cells with the ability to differentiate and regenerate in vivo new dental structures that may include enamel, dentin, cementum and pulp tissues. We evaluated odontoma tissues from 14 patients and further isolated and characterized human odontoma-derived mesenchymal cells (HODCs) with neural stem cell and hard tissue regenerative properties from a group of complex odontoma tissues from 1 of 14 patients. Complex odontoma was more common (9 of 14) than compound type and females (9 of 14) were more affected than males in our set of patients. HODCs were highly proliferative like dental pulp stem cells (DPSCs) but demonstrated stronger neural immunophenotype than both DPSCs and mandible bone marrow stromal cells (BMSCs) by expressing higher levels of nestin, Sox 2 and βIII-tubulin. When transplanted with hydroxyapatite/tricalcium phosphate into immunocompromised mice, HODCs differentiated and regenerated calcified hard tissues in vivo that were morphologically and quantitatively comparable to those generated by DPSCs and BMSCs. When transplanted with polycaprolactone (biodegradable carrier), HODCs differentiated to form new predentin on the surface of a dentin platform. Newly formed predentin contained numerous distinct dentinal tubules and an apparent dentin–pulp arrangement. HODCs represent unique odontogenic progenitors that readily commit to formation of dental hard tissues.  相似文献   

13.
骨髓间充质干细胞又称为骨髓源性间充质干细胞,是指存在于骨髓基质细胞系统中的一类干细胞,具有高度稳定的体外扩增能力和多向分化潜能等特点。骨髓间充质干细胞因其取材方便,易于分离和培养,以及在适当条件下可诱导分化为皮肤、骨骼、内脏、血液、神经等多种组织细胞的独特优势,目前被广泛应用于药物开发、免疫调节、组织修复、器官重建等多个研究领域。近年来,骨髓间充质干细胞作为种子细胞在组织工程领域有着非常诱人的潜在应用前景。本文就骨髓间充质干细胞在组织工程学研究中应用的最新进展作一综述。  相似文献   

14.
Two kinds of dental stem cells (DSCs), dental pulp stem cells (DPSCs) and stem cells from human-exfoliated deciduous teeth (SHED), have been identified as novel populations of mesenchymal stem cells that can be induced to differentiate into osteoblasts, chondrocytes, adipocytes, and neuron-like cells in vitro. As we know, both of them originate from the neural crest, but have distinct characteristics and functions in vitro and in vivo. The regeneration potential of DSCs declines with advanced age; however, the mechanism of the impaired potential in DSCs has not been fully explored. In this study, we investigated whether declined neurogenic differentiation capacity is associated with an altered expression of Wnt signaling-related proteins in vitro. We compared stem cells isolated from human dental pulp in two age groups: the exfoliated deciduous teeth (5–12 years), and the third permanent teeth (45–50 years). We found that the expression levels of neuron markers, such as βIII-tubulin, microtubule-associated protein 2(MAP2), tyrosine hydroxylase (TH), and Nestin were lower in the DPSCs group compared with that in the SHED group; however, in supplementation with human recombinant Wnt1 in the medium, the DPSCs were prone to neural differentiation and expressed higher levels of neurogenic markers. In summary, our study demonstrated that Wnt/β-catenin signaling may play a vital role in the age-dependent neural differentiation of DSCs. Therefore, DSCs may provide an ideal source of stem cells that can further extend their therapeutic application in nerve injury and neurodegenerative diseases.  相似文献   

15.
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.  相似文献   

16.
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources for the cell therapy of muscle diseases and can serve as powerful experimental tools for skeletal muscle research, provided an effective method to induce skeletal muscle cells is established. However, the current methods for myogenic differentiation from human ES cells are still inefficient for clinical use, while myogenic differentiation from human iPS cells remains to be accomplished. Here, we aimed to establish a practical differentiation method to induce skeletal myogenesis from both human ES and iPS cells. To accomplish this goal, we developed a novel stepwise culture method for the selective expansion of mesenchymal cells from cell aggregations called embryoid bodies. These mesenchymal cells, which were obtained by dissociation and re-cultivation of embryoid bodies, uniformly expressed CD56 and the mesenchymal markers CD73, CD105, CD166, and CD29, and finally differentiated into mature myotubes in vitro. Furthermore, these myogenic mesenchymal cells exhibited stable long-term engraftment in injured muscles of immunodeficient mice in vivo and were reactivated upon subsequent muscle damage, increasing in number to reconstruct damaged muscles. Our simple differentiation system facilitates further utilization of ES and iPS cells in both developmental and pathological muscle research and in serving as a practical donor source for cell therapy of muscle diseases.  相似文献   

17.
18.
Stem cells with high proliferation, self-renewal and differentiation capacities are promising for tissue engineering approaches. Among stem cells, human tooth germ stem cells (hTGSCs) having mesenchymal stem cell characteristics are highly proliferative and able to differentiate into several cell lineages. Researchers have recently focused on transplanting stem cells with bioconductive and/or bioinductive materials that can provide cell commitment to the desired cell lineages. In the present study, effects of pluronic block copolymers (F68, F127 and P85) on in vitro myo- and neurogenic differentiation of human tooth germ stem cells (hTGSCs) were investigated. As P85 was found to exert considerable toxicity to hTGSCs even at low concentrations, it was not evaluated for further differentiation experiments. Immunocytochemical analysis, gene and protein expression studies revealed that while F68 treatment increased lineage-specific gene expression in both myo- and neuro-genically differentiated cells, F127 did not result in any remarkable difference compared to cells treated with differentiation medium. Subsequent studies are required to explore the exact mechanisms of how F68 increases the myogenic and neurogenic differentiation of hTGSCs. The present work indicates that pluronic F68 might be used in functional skeletal and neural tissue engineering applications.  相似文献   

19.
Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.  相似文献   

20.
Conductive nanofibrous scaffolds with that can conduct electrical current have a great potential in neural tissue engineering. The purpose of this study was to survey effects of electrical stimulation and polycaprolactone/polypyrrole/multiwall carbon nanotube (PCL/PPY/MWCNTs) fibrous scaffold on photoreceptor differentiation of trabecular meshwork mesenchymal stem cells (TM-MSCs). PCL/PPY/MWCNTs scaffold was made by electrospinning method. TM-MSCs were seeded on PCL/PPY/MWCNTs scaffold and stimulated with a potential of 115 V/m. Scanning electron microscopy, transmission electron microscopy, and FT-IR were used to evaluate the fabricated scaffold. Immunofluorescence and quantitative real-time polymerase chain reaction were used to examine differentiated cells. Scanning electron microscopy, transmitting electron microscopy, and FT-IR confirmed the creation of the composite structure of fibers. RT-qPCR analysis showed that the expression of rhodopsin and peripherin genes in electrically stimulated cells were significantly higher (5.7- and 6.23-fold, respectively; p ≤ 0.05) than those with no electrical stimulation. Collectively, it seems that the combination of PCL/PPY/MWCNTs scaffold, as a suitable conductive scaffold, and electrical stimulation could be an effective approach in the differentiation of stem cells in retinal tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号