首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altered cytokine production in mice lacking P2X(7) receptors   总被引:31,自引:0,他引:31  
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  相似文献   

2.
The release of IL-1 beta is a tightly controlled process that requires induced synthesis of the precursor pro-IL-1 beta and a second stimulus that initiates cleavage and secretion of mature IL-1 beta. Although ATP as a second stimulus potently promotes IL-1 beta maturation and release via P2X(7) receptor activation, millimolar ATP concentrations are needed. The human cathelicidin-derived peptide LL37 is a potent antimicrobial peptide produced predominantly by neutrophils and epithelial cells. In this study, we report that LL37 stimulation of LPS-primed monocytes leads to maturation and release of IL-1 beta via the P2X(7) receptor. LL37 induces a transient release of ATP, membrane permeability, caspase-1 activation, and IL-1 beta release without cell cytotoxicity. IL-1 beta release and cell permeability are suppressed by pretreatment with the P2X(7) inhibitors oxidized ATP, KN04, and KN62. In the presence of apyrase, which hydrolyzes ATP to AMP, the effect of LL37 was not altered, indicating that LL37 rather than autocrine ATP is responsible for the activation of the P2X(7) receptor. We conclude that endogenous LL37 may promote IL-1 beta processing and release via direct activation of P2X(7) receptors.  相似文献   

3.
AIM: To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β (pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events. METHODS: All experiments were performed on fresh or overnight cultured human peripheral blood monocytes (PBMCs) that were isolated from healthy donors. PBMCs were activated by lipopolysaccharide (LPS) stimulation before being treated with Adenosine triphosphate (ATP, 1 mmol/L), human α-defensin-5 (HD-5, 50 μg/mL), and/or nigericin (Nig, 30 μmol/L). For each experiment, the culture supernatants were collected separately from the cells. Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL-1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies. RESULTS: We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation. In the presence of HD-5, this release of IL-1β, but not the processing of pro-IL-1β to IL-1β, was completely inhibited. Similarly, in the presence of HD-5, the release of IL-1β, but not the processing of IL-1β, was significantly inhibited from LPS-activated monocytes stimulated with Nig. Finally, we treated LPS-activated monocytes with ATP and Nig and collected the supernatants. We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes. Interestingly, and contrary to IL-1β processing and release, caspase-1 cleavage and release was not blocked by HD-5. All images are representative of three independent experiments. CONCLUSION: These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.  相似文献   

4.
The P2X7 receptor (P2X7R) is an ATP-gated cation channel that activates caspase-1 leading to the maturation and secretion of IL-1beta. Because previous studies indicated that extracellular Cl- exerts a negative allosteric effect on ATP-gating of P2X7R channels, we tested whether Cl- attenuates the P2X7R-->caspase-1-->IL-1beta signaling cascade in murine and human macrophages. In Bac1 murine macrophages, substitution of extracellular Cl- with gluconate produced a 10-fold increase in the rate and extent of ATP-induced IL-1beta processing and secretion, while reducing the EC50 for ATP by 5-fold. Replacement of Cl- with gluconate also increased the potency of ATP as an inducer of mature IL-1beta secretion in primary mouse bone marrow-derived macrophages and in THP-1 human monocytes/macrophages. Our observations were consistent with actions of Cl- at three levels: 1) a negative allosteric effect of Cl-, which limits the ability of ATP to gate the P2X7R-mediated cation fluxes that trigger caspase-1 activation; 2) an intracellular accumulation of Cl- via nonselective pores induced by P2X7R with consequential repression of caspase-1-mediated processing of IL-1beta; and 3) a facilitative effect of Cl- substitution on the cytolytic release of unprocessed pro-IL-1beta that occurs with sustained activation of P2X7R. This cytolysis was repressed by the cytoprotectant glycine, permitting dissociation of P2X7R-regulated secretion of mature IL-1beta from the lytic release of pro-IL-1beta. These results suggest that under physiological conditions P2X7R are maintained in a conformationally restrained state that limits channel gating and coupling of the receptor to signaling pathways that regulate caspase-1.  相似文献   

5.
The P2X7 receptor, mainly expressed by immune cells, is a ionotropic receptor activated by high concentration of extracellular ATP. It is involved in several processes relevant to immunomodulation and inflammation. Among these processes, the production of extracellular interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, plays a major role in the activation of the cytokine network. We have investigated the role of P2X7 receptor and of an associated calcium-activated potassium conductance (BK channels) in IL-1beta maturation and releasing processes by Schwann cells. Lipopolysaccharide-primed Schwann cells synthesized large amounts of pro-IL-1beta but did not release detectable amounts of pro or mature IL-1beta. ATP on its own had no effect on the synthesis of pro-IL-1beta, but a co-treatment with lipopolysaccharide and ATP led to the maturation and the release of IL-1beta by Schwann cells. Both mechanisms were blocked by oxidized ATP. IL-1beta-converting enzyme (ICE), the caspase responsible for the maturation of pro-IL-1beta in IL-1beta, was activated by P2X7 receptor stimulation. The specific inhibition of ICE by the caspase inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde blocked the maturation of IL-1beta. In searching for a link between the P2X7 receptor and the activation of ICE, we found that enhancing potassium efflux from Schwann cells upregulated the production of IL-1beta, while strongly reducing potassium efflux led to opposite effects. Blocking BK channels actually modulated IL-1beta release. Taken together, these results show that P2X7 receptor stimulation and associated BK channels, through the activation of ICE, leads to the maturation and the release of IL-1beta by immune-challenged Schwann cells.  相似文献   

6.
The proinflammatory IL-1 cytokines IL-1alpha, IL-1beta, and IL-18 are key mediators of the acute immune response to injury and infection. Mechanisms underlying their cellular release remain unclear. Activation of purinergic P2X(7) receptors (P2X(7)R) by extracellular ATP is a key physiological inducer of rapid IL-1beta release from LPS-primed macrophage. We investigated patterns of ATP-mediated release of IL-1 cytokines from three macrophage types in attempts to provide direct evidence for or against distinct release mechanisms. We used peritoneal macrophage from P2X(7)R(-/-) mice and found that release of IL-1alpha, IL-18, as well as IL-1beta, by ATP resulted exclusively from activation of P2X(7)R, release of all these IL-1 cytokines involved pannexin-1 (panx1), and that there was both a panx1-dependent and -independent component to IL-1beta release. We compared IL-1-release patterns from LPS-primed peritoneal macrophage, RAW264.7 macrophage, and J774A.1 macrophage. We found RAW264.7 macrophage readily release pro-IL-1beta independently of panx1 but do not release mature IL-1beta because they do not express apoptotic speck-like protein with a caspase-activating recruiting domain and so have no caspase-1 inflammasome activity. We delineated two distinct release pathways: the well-known caspase-1 cascade mediating release of processed IL-1beta that was selectively blocked by inhibition of caspase-1 or panx1, and a calcium-independent, caspase-1/panx1-independent release of pro-IL-1beta that was selectively blocked by glycine. None of these release responses were associated with cell damage or cytolytic effects. This provides the first direct demonstration of a distinct signaling mechanism responsible for ATP-induced release of pro-IL-1beta.  相似文献   

7.
We report that potassium leakage from cells leads to activation of the Ca2+-independent phospholipase A2 (iPLA2), and the latter plays a pivotal role in regulating the cleavage of pro-IL-1 beta by the IL-converting enzyme caspase-1 in human monocytes. K+ efflux led to increases of cellular levels of glycerophosphocholine, an unambiguous indicator of phospholipase A2 activation. Both maturation of IL-1 beta and formation of glycerophosphocholine were blocked by bromoenol lactone, the specific iPLA2 inhibitor. Bromoenol lactone-dependent inhibition of IL-1 beta processing was not due to perturbation of the export machinery for pro-IL-1 beta and IL-1 beta or to caspase-1 suppression. Conspicuously, activation of Ca2+-dependent phospholipase A2 did not support but rather suppressed IL-1 beta processing. Thus, our findings reveal a specific role for iPLA2 activation in the sequence of events underlying IL-1 beta maturation.  相似文献   

8.
The P2X7 receptor (P2X7R), an ATP-gated ion channel, plays essential roles in the release and maturation of IL-1beta in microglial cells in the brain. Previously, we found that lysophosphatidylcholine (LPC) potentiated P2X7R-mediated intracellular signals in microglial cells. In this study, we determined whether the lysophospholipids, i.e., LPC and sphingosylphosphorylcholine (SPC), modulate the ATP-induced release and processing of IL-1beta mediated by P2X7R in mouse MG6 microglial cells. LPC or SPC alone induced the release of precursor (pro-IL-1beta) and mature IL-1beta (mIL-1beta) from LPS-primed MG6 cells, possibly due to lytic functions. However, these lysophospholipids inhibited ATP-induced caspase-1 activation that is usually followed by the release of mIL-1beta. Conversely, ATP inhibited the release of pro-IL-1beta and mIL-1beta induced by LPC/SPC. This suggests that lysophospholipids and ATP mutually suppressed each function to release IL-1beta. P2X7R activation resulted in microtubule reorganization in the MG6 cells that was blocked in the presence of LPC and SPC. LPC/SPC reduced the amount of activated RhoA after stimulation with ATP, implying that these lysophospholipids block ATP-induced microtubule reorganization by interfering with RhoA activation. In addition, the microtubule inhibitor colchicine inhibited ATP-induced release of mIL-1beta similar to that of LPC and SPC. This suggests that the impairment of the microtubule reassembly may be associated with the inhibitory effects of LPC/SPC on ATP-induced mIL-1beta release. Mutual suppression by ATP and LPC/SPC on the maturation of IL-1beta was observed in LPS-primed primary microglia. Collectively, these data suggest opposing functions by lysophospholipids, either proinflammatory or anti-inflammatory, in regard to the maturation and release of IL-1beta from microglial cells.  相似文献   

9.
Constitutive expression of the pro-molecule of IL-16 has been found in T cells, mast cells, eosinophils, epithelial cells, fibroblasts, and dendritic cells. Here we show that IL-16 is also constitutively present in >98% of freshly isolated human CD14-positive peripheral blood monocytes when analyzed by flow cytometry. Because pro-IL-16 is cleaved to its bioactive mature form by caspase-3, and caspase-3 is also the pivotal effector of apoptosis in monocytes, we asked whether IL-16 release occurs in monocytes that undergo spontaneous apoptosis. As expected, freshly isolated, unstimulated monocytes underwent spontaneous caspase-3 activation. This apoptosis was paralleled by the loss of intracellular IL-16, as detected by flow cytometry, and the concurrent release of IL-16, as detected by ELISA. In contrast, stimulation with bacterial LPS inhibited caspase-3 activation and significantly inhibited the release of IL-16. As a specificity control, IL-1beta and IL-8 were not released during spontaneous monocyte apoptosis. In summary, our data demonstrate that monocytes contain IL-16 that is released during spontaneous apoptosis.  相似文献   

10.
Macrophages and their precursors, monocytes, are key cells involved in the innate immune response. Although both monocytes and macrophages produce caspase-1, the key enzyme responsible for pro-IL-1beta processing; macrophages are limited in their ability to activate the enzyme and release functional IL-1beta. In this context, because mutations in the pyrin gene (MEFV) cause the inflammatory disorder familial Mediterranean fever, pyrin is believed to regulate IL-1beta processing. To determine whether variations in pyrin expression explain the difference between monocytes and macrophages in IL-1beta processing and release, pyrin was studied in human monocytes and monocyte-derived macrophages. Although monocytes express pyrin mRNA and protein, which is readily inducible by endotoxin, monocyte-derived macrophages express significantly less pyrin mRNA and protein. Pyrin levels directly correlated with IL-1beta processing in monocytes and macrophages; therefore, we asked whether pyrin might promote IL-1beta processing and release. HEK293 cells were transfected with pyrin, caspase-1, apoptotic speck protein with a caspase recruitment domain, and IL-1beta. Pyrin induced IL-1beta processing and release in a dose-dependent manner. Conversely, pyrin small interference RNA suppressed pro-IL-1beta processing in both THP-1 cells and fresh human monocytes. In summary, both pyrin expression and IL-1beta processing and release are diminished upon the maturation of monocytes to macrophages. When pyrin is ectopically expressed or silenced, IL-1beta processing and release parallels the level of pyrin. In conclusion, in the context of endotoxin-induced activation of mononuclear phagocytes, pyrin augments IL-1beta processing and release.  相似文献   

11.
Mouse peritoneal macrophages stimulated with LPS produce large amounts of pro-IL-1 beta. When these cells were pulse-labeled with [35S]methionine, however, little labeled cytokine appeared in the medium after a chase, and that which was externalized was not processed to its mature biologically active form. In an effort to promote proteolytic maturation of IL-1 beta, macrophages were treated with agents that were expected to compromise their viability. The calcium ionophore A23187 and the detergent saponin caused complete release of nonprocessed 35-kDa pro-IL-1 beta and liberation into the extracellular medium of the cytoplasmic marker enzyme LDH and the lysosomal enzyme beta-N-acetylglucosaminidase. Hypotonic lysis resulted in the release of a 20-kDa IL-1 beta species that was distinct from the 17-kDa mature species. Importantly, incubation of the murine macrophages with the potassium/proton ionophore nigericin led to a quantitative conversion of pro-IL-1 beta to a 17-kDa species. The N-terminus of this nigericin-derived product possessed the amino acid sequence expected for mature biologically active IL-1 beta. Monensin, an ionophore similar to nigericin, did not induce release or proteolysis of IL-1 beta. Complete release of mature IL-1 beta required concentrations of nigericin in excess of 2 microM and a minimum of 10 min of treatment. Mature 17-kDa IL-1 beta was observed within the nigericin-treated cells before their lysis. Nigericin's effect was not limited to mouse peritoneal macrophages, inasmuch as the ionophore also induced release and proteolytic maturation of IL-1 beta produced by LPS-stimulated human peripheral blood monocytes. Treatment of macrophages with LPS and nigericin, therefore, results in a unique series of intracellular events that promote formation of mature 17-kDa IL-1 beta.  相似文献   

12.
Endotoxin-dependent release of IL-1 beta from mouse microglial cells is a very inefficient process, as it is slow and leads to accumulation of a modest amount of extracellular cytokine. Furthermore, secreted IL-1 beta is mostly in the procytokine unprocessed form. Addition of extracellular ATP to LPS-primed microglia caused a burst of release of a large amount of processed IL-1 beta. ATP had no effect on the accumulation of intracellular pro-IL-1 beta in the absence of LPS. In LPS-treated cells, ATP slightly increased the synthesis of pro-IL-1 beta. Optimal ATP concentration for IL-1 beta secretion was between 3 and 5 mM, but significant release could be observed at concentrations as low as 1 mM. At all ATP concentrations IL-1 beta release could be inhibited by increasing the extracellular K+ concentration. ATP-dependent IL-1 beta release was also inhibited by 90 and 60% by the caspase inhibitors YVAD and DEVD, respectively. Accordingly, in ATP-stimulated microglia, the p20 proteolytic fragment derived from activation of the IL-1-beta-converting enzyme could be detected by immunoblot analysis. These experiments show that in mouse microglial cells extracellular ATP triggers fast maturation and release of intracellularly accumulated IL-beta by activating the IL-1-beta-converting enzyme/caspase 1.  相似文献   

13.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.  相似文献   

14.
Potassium-inhibited processing of IL-1 beta in human monocytes.   总被引:9,自引:0,他引:9       下载免费PDF全文
I Walev  K Reske  M Palmer  A Valeva    S Bhakdi 《The EMBO journal》1995,14(8):1607-1614
Agents that deplete cells of K+ without grossly disrupting the plasma membrane were found to stimulate the cleavage of pro-interleukin (IL)-1 beta to mature IL-1 beta. Agents examined in this study included staphylococcal alpha-toxin and gramicidin, both of which selectively permeabilize plasma membranes for monovalent ions, the ionophores nigericin and valinomycin, and the Na+/K+ ATPase inhibitor ouabain. K+ depletion by brief hypotonic shock also triggered processing of pro-IL-1 beta. The central role of K+ depletion for inducing IL-1 beta maturation was demonstrated in cells permeabilized with alpha-toxin: processing of pro-IL-1 beta was totally blocked when cells were suspended in medium that contained high K+, but could be induced by replacing extracellular K+ with Na+, choline+ or sucrose. To test whether K+ flux might also be important in physiological situations, monocytes were stimulated with lipopolysaccharide (LPS) for 1-2 h to trigger pro-IL-1 beta synthesis, and transferred to K(+)-rich medium. This maneuver totally suppressed IL-1 beta maturation. Even after 16 h, however, removal of K+ from the medium resulted in rapid processing and export of IL-1 beta. Ongoing export of mature IL-1 beta from cells stimulated with LPS for 2-6 h could also be arrested by transfer to K(+)-rich medium. Moreover, a combination of two K+ channel blockers inhibited processing of IL-1 beta in LPS-stimulated monocytes. We hypothesize that K+ movement and local K+ concentrations directly or indirectly influence the action of interleukin-1 beta-converting enzyme (ICE) and, possibly, of related intracellular proteases.  相似文献   

15.
Monocytes and macrophages play a significant role in host's defense system, since they produce a number of cytokines in response to microbial infections. We have studied IL-1 beta, IL-18, IFN-alpha/beta, and TNF-alpha gene expression and protein production in human primary monocytes and GM-CSF-differentiated macrophages during influenza A and Sendai virus infections. Virus-infected monocytes released only small amounts of IL-1 beta or IL-18 protein, whereas 7- and 14-day-old GM-CSF-differentiated macrophages readily produced these cytokines. Constitutive expression of proIL-18 was seen in monocytes and macrophages, and the expression of it was enhanced during monocyte/macrophage differentiation. Expression of IL-18 mRNA was clearly induced only by Sendai virus, whereas both influenza A and Sendai viruses induced IL-1 beta mRNA expression. Since caspase-1 is known to cleave proIL-1 beta and proIL-18 into their mature, active forms, we analyzed the effect of a specific caspase-1 inhibitor on virus-induced IL-1 beta and IL-18 production. The release of IL-1 beta and IL-18, but not that of IFN-alpha/beta or TNF-alpha, was clearly blocked by the inhibitor. Our results suggest that the cellular differentiation is a crucial factor that affects the capacity of monocytes/macrophages to produce IL-1 beta and IL-18 in response to virus infections. Furthermore, the virus-induced activation of caspase-1 is required for the efficient production of biologically active IL-1 beta and IL-18.  相似文献   

16.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1.  相似文献   

17.
P2X(7) receptors (P2X(7)Rs) are ATP-gated ion channels that trigger caspase-1 activation in the presence of TLR ligands. Inflammatory caspase-1 is responsible for the proteolytic activation of IL-1beta. However, the signaling events that couple P2X(7)Rs to caspase-1 activation remain undefined. In this study we demonstrate that ATP-induced cellular oxidation is critical for caspase-1 activation and subsequent IL-1beta processing. Purinergic receptor stimulation, including P2X(7)Rs, of endotoxin-primed human monocytes augments NADPH oxidase activity whereas concurrent purinergic receptor stimulation triggers protein denitroyslation, leading to the formation of peroxynitrite. IL-1beta cleavage is blocked under conditions where superoxide anion formation is blocked or monocytes are treated with antioxidants or a peroxynitrite scavenger. Nigericin, a K(+)/H(+) antiporter, also increases NADPH oxidase activity, leading to IL-1beta and caspase-1 processing that is blocked by a peroxynitrite scavenger or inhibition of NADPH oxidase. These data demonstrate that signaling via NADPH oxidase activity is fundamental for the processing of mature IL-1beta induced by P2X(7)R stimulation.  相似文献   

18.
Caspase-1 is a cysteine protease composed by two 20-kDa and two 10-kDa subunits that processes pro-IL-1beta and pro-IL-18 to their mature forms. This enzyme is present in cells as a latent zymogen that becomes active through a tightly regulated proteolytic cascade. Activation is initiated by the oligomerization of an adaptor molecule, or by the formation of a multiprotein complex named inflammasome. Negative regulation of caspase-1 activation is exerted by proteins that compete with the adaptor molecule or with the inflammasome formation. We previously reported that fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, increases caspase-1 activity in PBMC. This effect was strengthened by Mycobacterium tuberculosis, rending an exacerbated IL-1beta, IL-18, and IFN-gamma production. Mevalonate, the product of 3-hydroxy-3-methylglutaryl coenzyme A reductase, is a precursor for both nonsterol isoprenoid and sterol formation. In this study, we studied the involvement of mevalonate derivatives in the regulation of caspase-1 activation. Inhibition of sterol formation by SKF-104976 or haloperidol had no effect on IL-1beta release. However, the isoprenoid geranylgeraniol prevented both caspase-1 activation and the exacerbated IL production induced by fluvastatin. This isoprenoid significantly reduced the release of IL-18 and IFN-gamma by PBMC treated with mycobacteria, even in the absence of fluvastatin. In correlation with the increased caspase-1 activity, fluvastatin stimulated the proforms cleavage, enhancing the formation of active subunit p10. Geranylgeraniol not only prevented this effect, but induced proforms accumulation. Present results suggest that, once the proteolytic cascade is initiated, geranylgeraniol may exert an additional negative regulation on caspase-1 cleavage process.  相似文献   

19.
Liu B  Novick D  Kim SH  Rubinstein M 《Cytokine》2000,12(10):1519-1525
Interleukin (IL-)18 is an activator of NK cells and a co-inducer of Th(1)cytokines, sharing structural features with the IL-1 family of proteins. Unlike most other cytokines, IL-18 and IL-1beta lack a signal peptide, have an all beta-pleated sheet structure and are synthesized as biologically inactive precursors (pro-IL-18 and pro-IL-1beta). These precursors are cleaved by caspase-1 (IL-1beta-converting enzyme, ICE) to form the biologically active mature cytokines. Direct expression of mature recombinant human IL-18 in E. coli resulted in a partially active cytokine. We tested the possibility that correct folding of huIL-18 requires its prior synthesis as pro-IL-18. Because caspase-1 is not readily available, we constructed an expression vector encoding human pro-IL-18 in which the caspase-1 cleavage site was mutated into a factor Xa site. To facilitate purification, the mutated pro-IL-18 cDNA was fused in frame to a glutathione-S-transferase (GST) coding sequence. The GST-pro-IL-18 fusion protein was expressed in E. coli, captured on glutathione agarose and mature human IL-18, exhibiting high biological activity was released upon cleavage with factor Xa. This result indicates that correct folding of huIL-18 occurs at the level of pro-IL-18 and provides a practical way to produce biologically active huIL-18.  相似文献   

20.
Interleukin-1beta (IL-1beta) is a pro-inflammatory cytokine that plays an important role in host defense and inflammatory diseases. The maturation and secretion of IL-1beta are mediated by caspase-1, a protease that processes pro-IL-1beta into biologically active IL-1beta. The activity of caspase-1 is controlled by the inflammasome, a multiprotein complex formed by NLR proteins and the adaptor ASC, that induces the activation of caspase-1. The current model proposes that changes in the intracellular concentration of K(+) potentiate caspase-1 activation induced by the recognition of bacterial products. However, the roles of P2X7 receptor and intracellular K(+) in IL-1beta secretion induced by bacterial infection remain unknown. Here we show that, in response to Toll-like receptor agonists such as lipopolysaccharide or infection with extracellular bacteria Staphylococcus aureus and Escherichia coli, efficient caspase-1 activation is only triggered by addition of ATP, a signal that promotes caspase-1 activation through depletion of intracellular K(+) caused by stimulation of the purinergic P2X7 receptor. In contrast, activation of caspase-1 that relies on cytosolic sensing of flagellin or intracellular bacteria did not require ATP stimulation or depletion of cytoplasmic K(+). Consistently, caspase-1 activation induced by intracellular Salmonella or Listeria was unimpaired in macrophages deficient in P2X7 receptor. These results indicate that, unlike caspase-1 induced by Toll-like receptor agonists and ATP, activation of the inflammasome by intracellular bacteria and cytosolic flagellin proceeds normally in the absence of P2X7 receptor-mediated cytoplasmic K(+) perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号