首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary porcine hepatocytes were cryopreserved using freezing boxes or a programmable freezer (PF). Upon thawing and culturing in 12-well plates cryopreserved hepatocytes were compared with their fresh controls on days 1 and 2 after plating. Cryopreserved hepatocytes attached approximately as well as fresh hepatocytes and useful cultures were obtained. In cryopreserved hepatocytes, coumarin 7-hydroxylation, 6beta-testosterone hydroxylation and p-nitrophenol glucuronidation were reduced to about 10-40, 35 and 40%, respectively, compared to their fresh counterparts. Glycogen synthesis in cryopreserved hepatocytes was reduced to about 30% on day 1 of culture and about 47% on day 2 of culture compared to the synthesis in fresh hepatocytes. Both fresh and cryopreserved hepatocytes increased the synthesis by twofold in response to stimulation with insulin. Reduced basal levels of glycogen and of glycogen synthesis could be explained by an increased energy demand in cryopreserved hepatocytes needing to repair damages caused by cryopreservation. Glycogenolysis was reduced to about 50% in cryopreserved hepatocytes and gluconeogenesis to about 40% of the glucose production in fresh hepatocytes. In both fresh and cryopreserved hepatocytes the glucose production from glycogenolysis and gluconeogenesis, respectively, was increased fourfold in response to stimulation with glucagon. Overall, the hepatocytes cryopreserved in boxes had a tendency to perform better than hepatocytes cryopreserved in a programmable freezer. In conclusion, the cryopreserved hepatocytes were metabolic active; however, to a lower extent than the fresh hepatocytes, although, the cryopreserved hepatocytes responded as well as the fresh hepatocytes to insulin and glucagon.  相似文献   

2.
In view of the advantages of the bulk production of clonal pancreaticbeta cells, an investigation was made of the growth and insulin secretoryfunctions of an electrofusion-derived cell line (BRIN-BD11) immobilizedon a solid microcarrier, cytodex-1 or a macroporous microcarrier,cultispher-G. For comparison, similar tests were performed usingBRIN-BD11 cells present in single cell suspensions or allowed toform pseudoislets. Similar growth profiles were recorded for eachmicrocarrier with densities of 4.4×105±0.3 cells/ml and4.2×105±0.2 cells/ml achieved using cytodex-1 andcultispher-G, respectively. Cell viability began to decline on day 5 ofculture. Insulin concentration in the culture medium reached a peak of26±2.0 ng/ml and 24±2.2 ng/ml for cells grown oncytodex-1 and cultispher-G, respectively. Cells grown on both types ofmicrocarrier showed a significant 1.5–1.8-fold acuteinsulin-secretory response to 16.7 mmol/l glucose. L-alanine (10 mmol/l) andL-arginine (10 mmol/l) also induced significant 3–4 fold increasesof insulin release. BRIN-BD11 cells immobilized on cytodex-1 or cultispher-Gout-performed single cell suspensions and pseudoislets in terms ofinsulin-secretory responses to glucose and amino acids. A 1.3-fold,2.2-fold and 1.7-fold stimulation of insulin secretion was observed forglucose, L-alanine and L-arginine respectively in single cellsuspensions. Corresponding increases for pseudoislets were1.6–1.8-fold for L-alanine and L-arginine, with no significantresponse to glucose alone. These data indicate the utility ofmicro-carriers for the production of functioning clonal beta cells.  相似文献   

3.
Cells derived by trypsinization of neonatal golden hamster pancreas were cultured in modified Eagle's medium for 120 h in the presence of glucose (0.8 mg/ml) and for an additional 48 h in medium containing glucose (0.8 or 3.1 mg/ml) or tolbutamide (1,000 µg/ml) plus glucose (0.8 mg/ml). At day 7, cultures were stained differentially for light microscopy or examined by electron microscopy. Immunoreactive insulin (IRI) and immunoreactive glucagon (IRG) in the culture medium were measured by standard immunoassay procedures. Staining properties and ultrastructural appearance of cultured cells were comparable to those of the intact neonatal hamster pancreas. Cultures consisted predominantly of cells possessing aldehyde fuchsin positive (AF+) cytoplasmic granules resembling ultrastructurally those of the intact neonatal pancreatic beta cells and additionally, those of fibroblastoid, acinar, acino-insular, and aldehyde fuchsin negative (AF-) argyrophilic cells. IRI release rate by the cultured cells was increased in the presence of elevated glucose or tolbutamide which paralleled the loss of AF+ granulation, but IRG release rate was suppressed by elevated glucose concentration. These findings indicate that these monolayer cultures consist of most of the cell types occurring in the neonatal pancreas, including endocrinologically competent islet cells.  相似文献   

4.
The injection of placental stromal cells isolated from fetal human tissues (f-hPSC) was reported to indirectly induce tissue regeneration in different animal models. A procedure of f-hPSC isolation from fragments of both selected fresh or cryopreserved bulk placental neonate tissues is proposed, based on their high migratory potential,. The fragments of the desired fetal placental tissues are adhered to a culture dish by traces of diluted fibrin and covered with culture medium. Spontaneous migration of pure f-hPSC from the tissue fragments to the cell culture dishes is followed by their rapid expansion by numerous passages. The isolated f-hPSC express typical mesenchymal surface antigens, including CD29, CD105, CD166 and CD146, with negative expression of white blood cell lineage and endothelial cells markers. Optimal yields of f-hPSC cultures can also be obtained from tissue samples cryopreserved in medium composed of 10% dimethyl sulfoxide (M2SO) and 50% fetal calf serum. Slightly better yields are obtained with media supplemented with 1% human albumin. Medium with 5% M2SO and/or 0.25 mg/ml PEG yielded inferior results. The f-hPSC from fresh or cryopreserved tissues express similar cell markers and growth kinetics. The proposed isolation protocol may also be applied for high yield isolation of stromal cells from fresh and cryopreserved tissue of other organs.  相似文献   

5.
To determine the mechanism responsible for deficient carbohydrate metabolism in patients with insulinoma, we studied three affected patients and seven normal controls using the hyperglycaemic clamp method (8.4 mmol/l) with the BIOSTATOR (GCIIS). In insulinoma patients, the amount of glucose necessary to reach the hyperglycaemic clamp was less than that required in normal controls (6.19 +/- 1.19 mg/min/kg vs. 9.95 +/- 0.53 mg/min/kg) (p less than 0.05). There was no significant difference in metabolized glucose (M) in the stable phase of the hyperglycaemic clamp; however, the M/IRI in this phase was less in those with insulinoma (7.9 +/- 0.50) than in controls (22.26 +/- 4.14) (p less than 0.05). There was no difference in beta cell secretory response to hyperglycaemic stimulus (defined as the increase in the concentration of C-peptide from the basal state to the stable phase of the hyperglycaemic clamp) between the two groups. Hepatic insulin extraction was significantly lower in patients with insulinoma than in normal controls (+0.72 +/- 0.07 vs. +0.85 +/- 0.01). Finally, the ratios of fractional turnover of glucose (K/IRI); glucose clearance/IRI and total rate of elimination of glucose from the extracellular pool/IRI were also all lower in patients with insulinoma than in controls (p less than 0.05). These data support the conclusion that deficient glucose metabolism seen in these patients is not related to a lack of response to glucose on the part of normal or neoplastic islet tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To study the regulation of lipogenesis in adipose tissue by insulin and growth hormone during lactation, tissue was biopsied from primiparous bovines at 30 days antepartum and 60 days postpartum. Tissue was cultured for 24 hr or 48 hr in M199 with acetate and glucose, with a change of medium at 24 hr. The three in vitro treatments were: insulin and hydrocortisone at 10 and 50 ng/ml, respectively (IH); IH + 10 ng/ml of growth hormone (G10); and IH + 100 ng/ml of growth hormone (G100). IH allowed lipogenesis rates from 50% to 85% of those in fresh tissue. Addition of 10 ng/ml of growth hormone reduced (P less than 0.05) lipogenesis; at 100 ng/ml, the effect was only slightly greater. The hypothesis that insulin and growth hormone could be degraded by bovine adipose tissue was tested. Adipose tissue cell-free extracts degraded 125I-labeled insulin, but did not degrade labeled growth hormone. The insulin protease activity was further characterized and had a pH optimum of 7.1, a maximum hydrolysis of approximately 70%, and a hydrated molecular mass of approximately 23,000 daltons. Insulin proteolysis was inhibited by specific insulin protease inhibitors and stimulated by disulfide reducing agents. Bovine growth hormone, prolactin, and histone inhibited (P less than 0.05) the proteolysis of insulin, while bovine serum albumin, egg albumin, trypsin inhibitor, and lysozyme did not. Adipose tissue from pregnant and lactating bovines was sensitive to insulin and growth hormone, and growth hormone may modulate activity of an insulin-specific protease.  相似文献   

7.
AtT20 (pituitary corticotroph) cells were transfected with either the native or a mutant [AspB10]rat insulin II gene, using a plasmid containing the insulin gene and a neomycin resistance gene under the control of independent constitutive promoters. The cellular immunoreactive insulin (IRI) content ranged from 0.8-440 ng/10(6) cells, with the highest value similar to that found for a rat insulinoma cell line (RIN) and corresponding to approximately 1% that of native pancreatic B-cells. There was a direct correlation between insulin mRNA levels and IRI content and no correlation between mRNA levels and rat insulin II gene copy number. Furthermore, in some lines the insulin II transgene was lost even though the gene encoding neomycin resistance was retained. IRI release was stimulated up to 4-fold by isobutylmethylxanthine in all lines transfected with the native rat insulin II gene, and HPLC analysis showed most IRI as fully processed insulin, with less than 5% as proinsulin. These cells, thus, directed most proinsulin to secretory granules for conversion and regulated release regardless of the absolute amount of IRI expressed. One of the lines transfected with the AspB10 mutant gene (line AA9) released nearly 50% of IRI as proinsulin under basal conditions, with stimulation of insulin, but not proinsulin, release by isobutylmethylxanthine. This confirmed our previous finding of partial diversion of this mutant proinsulin from the regulated to the constitutive pathway. A second line (IC6) expressing the same mutant gene at much higher levels appeared to direct all mutant proinsulin to the regulated pathway, suggesting that for this particular mutant proinsulin, the secretory pathway employed by the transfected cells can be affected by the amount of proinsulin synthesized.  相似文献   

8.
Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.  相似文献   

9.
The present study examined the effects of both insulin and insulin-like growth factor-I (IGF-I) on cell division and specific functions of cultured adrenocortical cells from 100- to 122-day-old ovine fetuses. When culture was performed in a serum-free medium containing transferrin and ascorbic acid, the number of cells increased only slightly (1.2-fold) over a 4-day period. Addition of insulin or IGF-I in the culture medium enhanced the number of cells counted on Day 5. The effect of both peptides was dose-dependent, but 10 ng/ml IGF-I was as potent as 10 micrograms/ml insulin. The acute cyclic adenosine 3',5'-monophosphate (cAMP) and steroidogenic responses to adrenocorticotropin (ACTH1-24) decreased in fetal cells cultured in the absence of insulin or ACTH. Insulin at micromolar concentrations not only prevented this decrease but enhanced the acute ACTH1-24-induced cAMP output on Day 5 over that observed on Day 2. Treatment of fetal cells for 4 days with increasing concentrations of insulin or IGF-I enhanced the acute cAMP and steroidogenic responses (3- to 4-fold) to ACTH1-24 over that of control cells. The ED50 of IGF-I was about 3 ng/ml (congruent to 0.4 nM) whereas that of insulin was about 10 ng/ml (1.7 nM). However, a second plateau was apparent at concentrations of insulin above 1 microgram/ml. The acute cholera toxin stimulation of cAMP production of cells cultured in the absence of insulin or ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A simple radioreceptor assay for insulin rat liver membranes as receptor sites, with sufficient specificity precision, and sensitivity to detect 10 ng or 276 muU/ml of serum insulin, has been developed. In the presence of standard porcine insulin at the concentration of 1.0 ng/tube, approximately 8% of 125I-porcine insulin was bound to the plasma membranes and ninety-five per cent of this binding was inhibited by 1.0 microgram of standard insulin per tube. Four animal insulins inhibited the binding of 125I-insulin while ACTH, glucagon, human growth hormone, and oxytocin were inert. Insulin values in dog pancreatic vein sera obtained during and after glucose loading and measured by the present radioreceptor assay agreed well with immunoreactive insulin. The ratio of IRI to the measurement by radioreceptor assay was 1.09 +/- 0.18 for the same sera.  相似文献   

11.
The role of glutathione (GSH) in the differentiated state of insulin-secreting cells was studied using 2-mercaptoethanol as a means of varying intracellular GSH levels. 2-Mercaptoethanol (50 microM) caused a marked increase of GSH in two rat insulinoma cell lines, RINm5F and INS-1, the latter being dependent on the presence of 2-mercaptoethanol for survival in tissue culture. The effect of 2-mercaptoethanol on GSH was shared by other thiol compounds. Since in other cell types 2-mercaptoethanol is thought to act on cystine transport, thereby increasing the supply of cysteine for GSH synthesis, we have studied [35S]cystine-uptake in INS-1 cells. At equimolar concentrations to cystine, 2-mercaptoethanol caused stimulation of [35S]cystine-uptake. The effect persisted in the absence of extracellular Na+, probably suggesting the involvement of the Xc- carrier system. INS-1 cells with a high GSH level, cultured 48 h with 2-mercaptoethanol, displayed a lower cystine uptake than control cells with a low GSH content. The effect of variations of the GSH levels on short-term insulin release was studied. No alteration of glyceraldehyde-induced or KCl-induced insulin release in RINm5F cells was detected. In contrast, both in islets and in INS-1 cells, a high GSH level was associated with a slightly lower insulin release. In INS-1 cells the effect was more marked at low glucose concentrations, resulting in an improved stimulation of insulin secretion. On the other hand, in islets, a decrease in the incremental insulin release evoked by glucose was seen. As in other cell types, oxidized glutathione (GSSG) was less than 5% of total GSH, and in INS-1 cells no change in the GSH/GSSG ratio was detected during glucose-induced or 3-isobutyl-1-methylxanthine-induced insulin release. In conclusion, 2-mercaptoethanol-dependent INS-1 cells, as well as RINm5F cells and islets of Langerhans, display a low capacity in maintaining intracellular levels of GSH in tissue culture without extracellular thiol supplementation; 2-mercaptoethanol possibly acts by promoting cyst(e)ine transport; changes in GSH levels caused a moderate effect on the differentiated function of insulin-secreting cells.  相似文献   

12.
We have previously demonstrated an impaired insulin response to intraperitoneal glucose and arginine by the transplantable NEDH rat insulinoma. The nature of this tumour B-cell defect has been further studied by investigating the response of insulinoma-bearing rats to intravenous and intragastric glucose. Intravenous glucose failed to stimulate plasma immunoreactive insulin (IRI) above high basal levels (14.5 +/- 1.1 micrograms/L). However, significant elevation of the plasma IRI concentration was observed following an intragastric glucose load (17.1 +/- 1.5 micrograms/L; P less than 0.02). In view of the different effects of oral and intravenous glucose on insulin secretion in the RIN, implicating an involvement of incretin factors from the gut, the response of the tumour to GIP was investigated. Plasma IRI concentrations rose significantly in these animals (20.6 +/- 2.5 micrograms/L at 5 min, P less than 0.02). We conclude that (a) the transplantable rat insulinoma is responsive to GIP, and (b) that whilst the tumour B-cell has lost its insulin responsiveness to hyperglycaemia produced by intraperitoneal or intravenous glucose, it retains its ability to respond to intragastric glucose. This could be due to incretin factors from the gut of which GIP is currently the strongest candidate.  相似文献   

13.
The aim of this study was to determine the optimal conditions (effect of culture time before and after cryopreservation) for cryopreservation of specific pathogen-free pig islet cells. METHODS: (1) Glucose-induced insulin secretion by fresh islet cells cultured for 10 days was compared to that by islet cells cryopreserved 7 days after isolation and cultured 3 days after thawing. (2) Islet cells were cryopreserved 1, 7, or 14 days after isolation and cultured 3, 7, 14, or 21 days after thawing. Islet cell number, insulin content, and insulin response under perifusion tests were investigated. RESULTS: (1) Insulin response by cryopreserved islet cells was identical to that by fresh islet cells (basal/stimulation index: 2. 13 +/- 0.19 vs 2.17 +/- 0.16, n = 4, NS), although the amount of secreted insulin was reduced by 40% (area under the curve: 2136 +/- 198 pM/10(4) cells/180 min vs 3564 +/- 636 pM/10(4) cells/180 min, P = 0.104). (2) Cell number 6 days after thawing was reduced by 54, 40, and 63% when cryopreservations were carried out at D1, D7, and D14. (3) Insulin content in cultured or cryopreserved islet cells increased between 7 and 14 days of culture. (4) Whatever the culture time before and after cryopreservation, insulin secretion in response to glucose was maintained. The insulin release was the highest for islet cells cryopreserved 14 days after isolation and cultured 14 days after thawing (stimulation index: 6.19 +/- 2.68). CONCLUSIONS: SPF pig islet cells remained functional after cryopreservation in polyethylene glycol and it may be important to culture islet cells over 14 days before and after cryopreservation.  相似文献   

14.
15.
Although female fertility maintenance technology (FFMT) provides an effective option for preserving fertility in patients with cancer suffering from fertility loss due to cancer treatment, previous studies have shown that the technique has certain potential risks and requires an assessment of the health status of the offspring since FFMT may lead to glucose metabolism disorder in offspring mice. The present animal study examined the glucose metabolism of adult mice offspring born from ovarian tissue cryopreservation and orthotopic allotransplantation. The mice were divided into three groups: normal, fresh ovary transplantation, and cryopreserved ovary transplantation. We recorded fasting blood glucose, glucose tolerance, and fasting serum insulin level for six months. Liver DNA, RNA, and proteins were extracted to detect the interaction between DNA methylation and Grb10 expression and insulin signaling pathway factors such as P-IGF1R, P-IRS2, P-AKT, and Grb10. Female recipient mice that received FFMT could successfully give birth after mating. The average litter size and total litter size of the cryopreserved and fresh groups showed marked differences compared with the normal group. Compared with the normal group, the fasting blood glucose and fasting serum insulin levels were higher in the cryopreserved and fresh groups. The mRNA and protein expressions of Grb10 were higher in the fresh and cryopreserved groups. Compared with the normal group, the DNA methylation status of four of the 11 sites of the Grb10 promoter was lower in the cryopreserved group. Grb10 overexpression inhibited the downstream phosphorylation protein factor expression (p-IGF-1R, p-IRS2, and p-Akt) of the IGF-1R signaling pathway. Female fertility maintenance technology (FFMT), including ovarian tissue cryopreservation (OTC), and orthotopic allotransplantation techniques might lead to glucose metabolism disorders in offspring mice.  相似文献   

16.
Prospects of using marine actinobacteria as probiotics in aquaculture   总被引:1,自引:0,他引:1  
In the present study, optimum culture conditions for the production of extracellular polysaccharides (EPS) in submerged culture of an edible mushroom, Laetiporus sulphureus var. miniatus and their stimulatory effects on insulinoma cell (RINm5F) proliferation and insulin secretion were investigated. The maximum mycelial growth (4.1 g l−1) and EPS production (0.6 g l−1) in submerged flask culture were achieved in a medium containing 30 g l−1 maltose, 2 g l−1 soy peptone, and 2 mM MnSO4·5H2O at an initial pH 2.0 and temperature 25°C. In the stirred-tank fermenter under optimized medium, the concentrations of mycelial biomass and EPS reached a maximum level of 8.1 and 3.9 g l−1, respectively. Interestingly, supplementation of deep sea water (DSW) into the culture medium significantly increased both mycelial biomass and EPS production by 4- and 6.7-fold at 70% (v/v) DSW medium, respectively. The EPS were proved to be glucose-rich polysaccharides and were able to increase proliferation and insulin secretary function of rat insulinoma RINm5F cells, in a dose-dependent manner. In addition, EPS also strikingly reduced the streptozotocin-induced apoptosis in RINm5F cells indicating the mode of the cytoprotective role of EPS on RINm5F cells.  相似文献   

17.
We have evaluated the effect of serotonin (5-HT) and of its biosynthetic precursors 5-Hydroxytryptophan (5-HTP) and tryptophan (TRP) on the release of immunoreactive glucagon (IRG) and insulin (IRI) from isolated islets and pieces of pancrease of the rat. In isolated islets, 5-HT inhibited the IRI response to a high glucose concentration (3.0 mg/ml), without affecting the IRG response to either a low (0.5 mg/ml) or a high glucose concentration; TRP stimulated the IRG and IRI response to the low glucose concentration, while 5-HTP was ineffective. When pieces of pancreas were used, 5-HT and 5-HTP inhibited IRG response to both glucose concentrations, while IRI release was inhibited only by 5-HT. The anti-5-HT agent metergoline enhanced the release of IRG and IRI by pieces of pancreas at both glucose concentrations. The results indicate that exogenous and endogenous 5-HT inhibit basal as well as glucose-mediated IRG and IRI release; that isolated islets are less sensitive than pieces of pancreas to the inhibitory effect of 5-HT and that TRP acts as an amino acid and not as a precursor of 5-HT.  相似文献   

18.
Knowledge of protective effects of corticosteroids on traumatized cells prompted us to test the potential benefit of islet cryopreservation in the presence of hydrocortisone. Neonatal murine islets were isolated by collagenase, followed by 2- to 3-day tissue culture. Precryopreservation glucose-stimulated (50-500 mg/dl) insulin release was 25-388% above basal (mean = 113%) in 18/20 fresh islet preparations. Subsequent freezing was done in RPMI 1640 medium plus 10% (v/v) heat-inactivated fetal calf serum and 10% (v/v) Me2SO with or without 1 mg/ml hydrocortisone at 0.25 degrees C per minute in a programmed freezing system, to -80 degrees C, and stored for greater than 60 days at -196 degrees C. Thawing, by transfer to room air, was followed by dilution, 4x (v/v), in 4 degrees C RPMI plus 10% protein, after which glucose-stimulated insulin release was reassessed, showing 56-280% response over basal in 3/8 steroid-treated preparation and 20-220% response in 3/10 control preparations. Basal insulin release was 0.72 ng/microgram protein/hr in fresh islets (N = 20) and 0.22 ng/microgram protein/hr after freeze-thawing. We conclude that functional islet survival by this method is approximately 30% and that hydrocortisone did not improve viability.  相似文献   

19.
The effect of cryopreservation on the proliferative response of fresh and cryopreserved (CP) rat and mouse hepatocytes was studied. Of the parameters measured, incorporation of 3H-thymidine and bromodeoxyuridine (BdrU) incorporation were the most sensitive and LDH content was the least sensitive. The optimal seeding density for epidermal growth factor (EGF)-stimulated proliferative response in fresh rat and mouse hepatocytes was 1.8 x 10(4) cells/cm2 and 2.1 x 10(4) cells/cm2, respectively. 3H-thymidine incorporation by fresh rat and mouse hepatocytes was maximal in cultures treated with 10 and 5 ng/ml EGF, respectively. The cell attachment of fresh rat hepatocytes after 48 h was higher (68%) than CP (42%), therefore, the CP hepatocyte seeding density was increased to 7.1 x 10(4) cells/cm2 so that the cell number after 48 h was the same as fresh hepatocytes. Using the adjusted seeding density, the 3H-thymidine and BdrU incorporation into fresh and CP rat hepatocytes was equivalent. The attachment efficiencies of fresh and CP mouse hepatocytes were the same, therefore, no adjustment was needed. The proliferative response (3H-thymidine incorporation and DNA content) to EGF was the same in fresh and CP mouse hepatocytes. The comitogen, norepinephrine (NE), increased the proliferative response to EGF to the same extent in both fresh and CP rat hepatocytes. In summary, cryopreserved rat and mouse hepatocytes retain their ability to proliferate in culture. Adjustment and monitoring of the seeding density is of high importance, especially with rat hepatocytes, which lose some attachment capacity after cryopreservation. The secondary mitogenic effect of NE is also retained by cryopreserved rat hepatocytes, suggesting that these cells retain alpha1-receptor function.  相似文献   

20.
Insulin is an important inhibitor of both hepatic glucose output and hepatic VLDL-triglyceride (VLDL-TG) production. We investigated whether both processes are equally sensitive to insulin-mediated inhibition. To test this, we used euglycemic clamp studies with four increasing plasma concentrations of insulin in wild-type C57Bl/6 mice. By extrapolation, we estimated that half-maximal inhibition of hepatic glucose output and hepatic VLDL-TG production by insulin were obtained at plasma insulin levels of approximately 3.6 and approximately 6.8 ng/ml, respectively. In the same experiments, we measured that half-maximal decrease of plasma free fatty acid levels and half-maximal stimulation of peripheral glucose uptake were reached at plasma insulin levels of approximately 3.0 and approximately 6.0 ng/ml, respectively. We conclude that, compared with insulin sensitivity of hepatic glucose output, peripheral glucose uptake and hepatic VLDL-TG production are less sensitive to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号