首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
When intact rat liver Golgi vesicles were incubated with [acetyl-3H]acetyl coenzyme A, radioactivity was incorporated into the vesicles in a manner dependent upon temperature, time, protein, and acetyl-CoA concentration. The vesicles concentrated the label 121-fold relative to the medium within 20 min, suggesting an active transport mechanism operating in intact vesicles, and incorporated more than 50% of this label into acid-insoluble materials. This was supported by the finding that incorporation was markedly reduced by Triton X-100 at levels above its critical micellar concentration. While the intravesicular low molecular weight fraction was predominantly free acetate, acetate ions themselves were not permeant to the vesicles. Double-label experiments suggested that the transport process involved the entire acetyl-CoA molecule. This was further supported by the fact that coenzyme ASH, palmitoyl-CoA and butyryl-CoA were markedly inhibitory. Incorporation was optimal at 22 degrees C at pH 7.0, and was moderately stimulated by ATP. However, compounds known to abolish proton gradients or to inhibit the Golgi proton pump had no effect. The apparent Km for the utilization process was 0.61 microM with a Vmax of 21.3 pmol/mg of protein/min. Oligomycin and 4,4'-diisothiocyanostilbene-2,2'disulfonic acid were inhibitory, whereas CMP-NeuAc, UDP-GlcNAc, adenosine 3'-phosphate, 5'-phosphosulfate, atractylosides, tunicamycin, 2'5'-ADP, and 3',5'-ADP were not, showing that this transport process is distinct from other nucleotide transporters previously described in rat liver Golgi. 75-85% of the radioactivity incorporated was shown to be in O-acetylated sialic acids, by neuraminidase release, purification, and high pressure liquid chromatography. The majority of the neuraminidase-resistant radioactivity was released by alkaline hydroxylamine as [3H]acetylhydroxamate, but a significant fraction was resistant to this treatment. The nature of the non-sialic acid radioactivity remains unknown. The existence of this transport mechanism provides yet another level at which the O-acetylation of sialic acids could be regulated.  相似文献   

2.
Isolated intact rat liver Golgi vesicles utilize [acetyl-3H]coenzyme A to add 3H-O-acetyl esters to sialic acids of internally facing endogenous glycoproteins. During this reaction, [3H]acetate also accumulates in the vesicles, even though the vesicles are impermeant to free acetate. On the other hand, entry of intact AcCoA into the lumen of the vesicles could not be demonstrated, and permeabilization of the vesicles did not alter the reaction substantially (Diaz, S., Higa, H. H., Hayes, B. K., and Varki, A. (1989) J. Biol. Chem. 264, 19416-19426). When vesicles prelabeled with [acetyl-3H] coenzyme A are permeabilized with saponin, we can demonstrate a [3H]acetyl intermediate in the membrane that can transfer label to the 7- and 9-positions of exogenously added free N-acetylneuraminic acid but not to glucuronic acid or CMP-N-acetylneuraminic acid. This labeled acetyl intermediate represents a significant portion of the radioactivity incorporated into the membranes during the initial incubation and cannot be accounted for by nonspecifically "trapped" acetyl-CoA in the permeabilized vesicles. There was no evidence for involvement of acetylcarnitine or acetyl phosphate as an intermediate. The overall acetylation reaction appears to involve two steps. The first step (utilization of exogenous acetyl-CoA to form the acetyl intermediate) is inhibited by coenzyme A-SH (apparent Ki = 24-29 microM), whereas the second (transfer from the acetyl intermediate to sialic acid) is not affected by millimolar concentrations of the nucleotide. Studies with amino acid-modifying reagents indicate that 1 or more histidine residues are involved in the first step of the acetylation reaction. Diethylpyrocarbonate (which can react with both nonsubstituted and singly acetylated histidine residues) also blocks the second reaction, indicating that the acetyl intermediate on both sides of the membrane involves histidine residue(s). Taken together with data presented in the preceding paper, these results indicate that the acetylation of sialic acids in Golgi vesicles may occur by a transmembrane reaction, similar to that described for the acetylation of glucosamine in lysosomes (Bame, K. J., and Rome, L. H. (1985) J. Biol. Chem. 260, 11293-11299). However, several features of this Golgi reaction distinguish it from the lysosomal one, including the nature and kinetics of the reaction and the additional involvement of an essential lysine residue. The accumulation of free acetate in the lumen of the vesicles during the reaction may occur by abortive acetylation (viz. transfer of label from the acetyl intermediate to water). It is not clear if this is an artifact that occurs only in the in vitro reaction.  相似文献   

3.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

4.
We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with [3H]acetate and [14C]glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with [acetyl-3H]acetyl-coenzyme A, the major labeled products were disialogangliosides. [Acetyl-3H]O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in [3H]N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from [3H]acetate was exclusively in the form of [3H]N-acetyl groups, whereas the 14C-label was at the 4-position. Pulse-chase analysis of the 3H/14C ratio showed that the N-acetyl groups of both GD3 and of the monosialoganglioside GM3 were turning over faster than the parent molecules. Selective periodate oxidation showed that both the inner and outer sialic acid residues of GD3 incorporated 3H-label in the in vitro reaction, and showed similar turnover of N-acetylation in the pulse-chase study. Taken together, these results indicate that both the O- and N-acetyl groups of the sialic acid residues of gangliosides turn over faster than the parent molecules. They also demonstrate a novel re-N-acetylation reaction that predicts the existence of de-N-acetyl gangliosides in melanoma cells.  相似文献   

5.
The occurrence of sialic acids in the free-living nematode Panagrellus redivivus was studied by periodate oxidation/[3H]sodium borohydride reduction of about 10(7) nematodes. In parallel, the capability of sialic acid biosynthesis was examined by metabolic labeling of the same number of nematodes with N-[3H]acetylmannosamine. In both experiments, radioactivity was incorporated into the nematodes. Mild acid hydrolysis, however, did not release radioactively labeled sialic acids or derivatives as tested by radio thin-layer chromatography, suggesting that P. redivivus does not contain or synthesize sialic acids.  相似文献   

6.
Malaria parasites do not contain or synthesize sialic acids   总被引:1,自引:0,他引:1  
The capacity of Plasmodia to synthesize sialic acids was investigated by adding radioactive acetate to short-term in vitro cultures of the intraerythrocytic asexual forms of three malaria parasites (the human malaria Plasmodium falciparum in Aotus trivirgatus erythrocytes; the simian malaria P. knowlesi in rhesus monkey erythrocytes; the rodent malaria P. berghei in mouse erythrocytes) and to cultures of extracellular zygotes of the avian malaria P. gallinaceum. Radioactive acetate was added to normal rhesus monkey erythrocytes and to cells of the murine myeloma NS-1 for comparison. Although [1-14C]-acetate labeled many proteins with each malaria parasite and the NS-1 cells, analysis of purified sialic acids revealed that only with the NS-1 cells was radioactivity incorporated into sialic acids. Furthermore, N-acetyl[6-3H]mannosamine was not incorporated into sialic acids or malarial glycoproteins when added to P. knowlesi cultures. All of the malaria parasites underwent growth or differentiation during these experiments as measured by [35S]methionine uptake into protein and by light microscopy. Extracellular parasites largely free of erythrocyte membranes were prepared to determine whether Plasmodia contain sialic acids that are not labeled by exogenous precursors. Purified merozoites of P. knowlesi and zygotes of P. gallinaceum did not contain detectable amounts of sialic acids on chemical analysis. Thus, although we could show that Plasmodia can incorporate radioactive sugars such as glucosamine, galactose and mannose into proteins, presumably glycoproteins, they do not synthesize sialic acids or sialo-glycoproteins, nor do they contain sialo-glycoconjugates of host origin.  相似文献   

7.
A mixture of N-acetyl-[4,5,6,7,8,9-14C]neuraminosyl-alpha (2-3(6]-galactosyl-beta (1-4-glucose[( 14C]sialyl-lactose) and N-acetylneuraminosyl-alpha (2-3(6]-galactosyl-beta(1-4)-glucit-1-[3H]ol(sialyl-[3H]lactitol) as well as porcine submandibular gland mucin labeled with N-acetyl- and N-glycoloyl-[9-(3)H]neuraminic acid were administered orally to mice. The distribution of the different isotopes was followed in blood, tissues and excretion products of the animals. One half of the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture given orally was excreted unchanged in the urine. The other half was hydrolysed by sialidase and partly metabolized further, followed by the excretion of 30% of the 14C-radioactivity as free N-acetyl-[4,5,6,7,8,9-14C]neuraminic acid and 60% of this radioactivity in the form of non-anionic compounds including expired 14CO2 within 24 h. The 14C-radioactivity derived from the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture which remained in the bodies of fasted mice after 24 h was less than 1%. In the case of well-fed mice, a higher amount of the sialic acid residues was metabolized. The bulk of radioactivity of the mucin was resorbed within 24 h. About 40% of the radioactivity administered was excreted by the urine within 48 h; 30% of this radioactivity represented sialic acid and 70% other anionic and non-anionic metabolic products. 60% of the radioactivity administered remained in the body, and bound 3H-labeled sialic acids were isolated from liver. Sialyl-alpha (2-3)-[3H]lactitol was injected intravenously into rats; the substance was rapidly excreted in the urine without decomposition. These studies show that part of the sialic acids bound to oligosaccharides and glycoproteins can be hydrolysed in intestine by sialidase and be resorbed. This is followed either by excretion as free sialic acid or by metabolization at variable degrees, which apparently depends on the compound fed and on the retention time in the digestive tract.  相似文献   

8.
A cytosolic sialic acid-specific O-acetyl-esterase was previously described that can remove O-acetyl esters from the 9-position of sialic acids. We show that rat liver Golgi vesicles contain a distinct sialic acid-esterase located within the lumen of the same vesicles that add O-acetyl esters to sialic acids. Studies of a retinoblastoma cell line genetically deficient in the cytosolic enzyme also confirm the existence of distinct membrane-associated sialic acid esterase activity. We developed a sensitive, specific and facile assay, which measures release of [3H]acetyl groups from [3H-acetyl]9-O-acetyl-N-acetylneuraminic acid. Using this assay, we show that rat liver membranes may contain different sialic acid O-acetyl-esterases. The membrane-associated enzyme(s) bind to Concanavalin A Sepharose, whereas the cytosolic enzyme does not. Membrane-bound and cytosolic esterases are inactivated by di-isopropyl-fluorophosphate, showing they are serine-active-site enzymes.  相似文献   

9.
The parent sialic acid N-acetylneuraminic acid can be modified or substituted in various ways, giving rise to a family of more than 25 compounds. The definitive identification of these compounds has previously required isolation of nanomole amounts for mass spectrometry or NMR. We have explored the possibility of using the known metabolic precursors of the sialic acids, particularly N-acetyl-[6-3H]mannosamine, to label and identify various forms of sialic acids in tissue culture cells. Firstly, we defined several variables that affect the labeling of sialic acids with N-acetyl-[6-3H]mannosamine. Secondly, we have devised a simple screening method to identify cell lines that synthesize substituted or modified sialic acids. We next demonstrate that it is possible to definitively identify the natures of the various labeled sialic acids without the use of mass spectrometry, even though they are present only in tracer amounts. The methods used include paper chromatography, analytical de-O-acetylation, periodate release of the 9-3H as [3H]formaldehyde (which is subsequently converted to a specific 3H-labeled chromophore), acylneuraminate pyruvate lyase treatment with identification of [3H]acylmannosamines, gas-liquid chromatography with radioactive detection, and two new high-pressure liquid chromatography methods utilizing the amine-adsorption:ion suppression and ion-pair principles. The use of an internal N-acetyl-[4-14C]neuraminic acid standard in each of these methods assures precision and accuracy. The combined use of these methods now allows the identification of radioactive tracer amounts of the various types of sialic acids in well-defined populations of tissue culture cells; it may also allow the identification of hitherto unknown forms of sialic acids.  相似文献   

10.
The activity of acetyltransferase was detected in the microsomal fraction of rat liver by incubation with [3H]acetyl-CoA and by analyses using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Endogenous membrane proteins of relatively high molecular weight were found to serve as substrates. Optimal conditions for assay of the enzyme were defined. A deacetylase activity was also detected, which was inhibited by 2 mM ethylenediaminetetraacetic acid. Further subfractionation disclosed that the acetyltransferase activity was most enriched in the Golgi fraction, in which its specific activity was some ninefold greater than in the total homogenate. The radioactive labelling of Golgi-associated proteins observed was relatively intense, exceeding that of histone and ribosomal proteins in the homogenate. Analysis of the acetylated Golgi fraction by two-dimensional electrophoresis revealed approximately 90 radioactive polypeptides. Various treatments demonstrated that a minimum of 80% of the incorporated radioactivity was present as derivatives of N-acetylneuraminic acid, principally N-acetyl-9-mono-O-acetylneuraminic acid (Neu5,9Ac2). The sialic acid O-acetyltransferase activity detected is thus probably identical to that reported by Varki and Diaz; the intense labelling of proteins reflects the ability of Golgi apparatus fractions to take up and concentrate acetyl-CoA. Protein-bound radioactive Neu5,9Ac2 was also detected in the medium of hepatocytes incubated with N-[3H]acetylmannosamine, demonstrating that these cells synthesize certain proteins containing acetylated sialic acids, some of which may be secreted. The data confirm that the Golgi apparatus is a major site of acetylation of protein-bound sialic acids in rat liver in vitro and provide new information showing that many glycoproteins undergo this particular type of modification.  相似文献   

11.
A decrease in the level of O-acetylated sialic acids observed in colorectal carcinoma may lead to an increase in the expression of sialyl Lewis(X), a tumor-associated antigen, which is related to progression of colorectal cancer to metastasis. The underlying mechanism for this reduction is, however, not fully understood. Two enzymes are thought to be primarily responsible for the turnover of O-acetyl ester groups on sialic acids; sialate-O-acetyltransferase (OAT) and sialate-O-acetylesterase (OAE). We have previously reported the characterization of OAT activity from normal colon mucosa, which efficiently O-acetylates CMP-Neu5Ac exclusively in the Golgi apparatus prior to the action of sialyltransferase. In this report we describe the identification of a lysosomal and a cytosolic OAE activity in human colonic mucosa that specifically hydrolyses 9-O-acetyl groups on sialic acid. Utilizing matched resection margin and cancer tissue from colorectal carcinoma patients we provide strong evidence suggesting that the level of O-acetylated sialic acids present in normal and diseased human colon may be dependent on the relative activities of OAT to lysosomal OAE. Furthermore, we show that the level of free cytosolic Neu5,9Ac2 in human colon is regulated by the relative activity of the cytosolic OAE.  相似文献   

12.
O-acetylated sialic acids in gangliosides from pig spleen lymphocytes   总被引:1,自引:0,他引:1  
The sialic acid content of gangliosides from pig spleen lymphocytes was studied by thin-layer chromatography. N-glycolylneuraminic acid and N-acetylneuraminic acid were detected for the first time in this material as the major sialic acids. In addition, two other sialic acids, tentatively designated O-acetylated sialic acids, according to their RF values on cellulose plates, were also found. We have detected several gangliosides showing a retarded migration pattern in two dimensional thin-layer chromatography with an intermediate ammonia treatment. One of these gangliosides could be an O-acetylated derivative of the disialoganglioside GD3, since after de-O-acetyation it co-migrates with GD3. Another ganglioside co-migrated with GM2 before the alkaline treatment; however, after the treatment it was also retarded and co-migrates with GD3.  相似文献   

13.
Microsomes prepared from equine submandibular glands and incubated with tritium-labelled AcCoA incorporated acid-insoluble radioactivity in a manner dependent on time, protein, membrane integrity and AcCoA concentration, with incorporation being optimal at 37°C and pH 6.6. Under the experimental conditions used a K M of 32.1 M for AcCoA and a Vmax of 1.2 pmol/mg protein x min was obtained. The incorporation of acid-insoluble radioactivity was also inhibited by CoA in a competitive manner (K i=240 M), as well as by para-chloromercuribenzoate, 3-dephospho-CoA, 5-IDP, 5-ADP, ß-NAD and 4,4-diisothiocyanatostilbene-2,2-disulfonate. We demonstrate here that this incorporation of radioactivity into endogenous sialic acid is due to the action of an AcCoA:sialate-4-O-acetyltransferase [EC 2.3.1.44]. Radio thin-layer chromatography analyses of propionic acid-released sialic acids showed that the incorporation of radioactivity correlated with the formation of a radiolabelled species that co-migrated with authentic Neu4,5Ac2. Saponification experiments using NaOH, mouse hepatitis virus strain S and Influenza C/JJ/50 virus also showed that the transfer of [3H]acetyl groups from [3H]AcCoA to endogenous sialic acid acceptors was occurring exclusively at carbon 4 of the pyranose ring.  相似文献   

14.
1. Methods are described for the extraction and assay of acetyl-CoA and of total acid-soluble and total acid-insoluble CoA derivatives in rat epididymal adipose tissue. 2. The concentration ranges of the CoA derivatives in fat pads incubated in vitro under various conditions were: total acid-soluble CoA, 0.20-0.59mm; total acid-insoluble CoA, 0.08-0.23mm; acetyl-CoA, 0.03-0.14mm. 3. An investigation was made of some postulated mechanisms of control of fatty acid and triglyceride synthesis in rat epididymal fat pads incubated in vitro. The concentrations of intermediates of possible regulatory significance were measured at various rates of fatty acid and triglyceride synthesis produced by the addition to the incubation medium (Krebs bicarbonate buffer containing glucose) of insulin, adrenaline, albumin, palmitate or acetate. 4. The whole-tissue concentrations of glucose 6-phosphate, l-glycerol 3-phosphate, citrate, acetyl-CoA, total acid-soluble CoA and total acid-insoluble CoA were assayed after 30 or 60min. incubation. The rates of fatty acid and triglyceride synthesis, calculated from the incorporation of [U-(14)C]glucose into fatty acids and glyceride glycerol respectively, and the rates of glucose uptake, lactate plus pyruvate output and glycerol output were measured over a 60min. incubation. 5. The rate of triglyceride synthesis could not be correlated with the concentrations of either l-glycerol 3-phosphate or long-chain fatty acyl-CoA (measured as total acid-insoluble CoA). Factor(s) other than the whole-tissue concentrations of these recognized precursors appear to be involved in the determination of the rate of triglyceride synthesis. 6. No relationship was found between the rate of fatty acid synthesis and the whole-tissue concentrations of the intermediates, citrate or acetyl-CoA, or with the two proposed effectors of acetyl-CoA carboxylase, citrate (as activator) or long-chain fatty acyl-CoA (as inhibitor). The control of fatty acid synthesis appears to reside in additional or alternative factors.  相似文献   

15.
The presence of mono-, di-, and tri-O-acetylated sialic acids on human cells was demonstrated by using radiochromatographic and chemical techniques. Human melanoma cells and fresh colon tissue were biosynthetically labeled with 6- (3H) glucosamine. Radiolabeled sialic acids were hydrolytically removed from cellular glycoconjugates, purified by ion-exchange chromatography, and separated by paper chromatography on the basis of the number of O-substitutions on each sialic molecule. This analytical technique characterized radiolabeled sialic acids that migrated with the same Rf as synthetic mono-, di-, and tri-O-acetylated 14C-labeled sialic acids. The mono-O-acetylated sialic acids were characterized by their sensitivity to sodium periodate oxidation and a crude mouse liver esterase preparation. The di- and tri-O-acetylated sialic acids were characterized by their resistance to sodium periodate oxidation and sensitivity to the action of crude mouse liver esterase. Chromatographically separated di- and tri-O-acetylated sialic acids from normal human colon tissue were characterized by their respective ion molecular weights by using fast-atom bombardment-mass spectrometry. Using these methods, we chemically characterized mono, di-, and tri-O-acetylated sialic acids expressed on human cells. Aberrant expression of O-acetylated sialic acids was associated with adenocarcinoma of the colon, leading to a nearly complete loss of di- and tri-O-acetylated sialic acids.  相似文献   

16.
We have shown previously that Golgi-enriched vesicles from the human melanoma cell line Melur can transfer [3H]acetate from [acetyl-3H]acetyl-CoA to endogenous GD3 to form [acetyl-3H]O-acetyl-GD3 (Manzi, A. E., Sjoberg, E. R., Diaz, S., and Varki, A. (1990) J. Biol. Chem. 265, 13091-13103). Applying the same approach in the human melanoma cell line M21, label was found in [acetyl-3H]O-acetyl-GD3 and also in a species co-migrating with unsubstituted GD3 on TLC. Both were sialidase-sensitive and alkali-labile, indicating incorporation as [3H]O-acetyl esters on sialic acids. Immunological reactivity, sialidase sensitivity, chromatographic behavior, and the known ganglioside pattern of M21 cells suggested that the slower migrating species might be [acetyl-3H]O-acetyl-GD2. Sialic acids released from this labeled molecule by sialidase showed esterification with [3H]acetate at both C7 and C9 hydroxyls. Lipid extracts from cells metabolically labeled with [3H]galactose showed a corresponding ganglioside, which upon alkali treatment yielded a species migrating with GD2. Analysis of purified ganglioside by high performance thin layer chromatography immuno-overlays, fast atom bombardment-mass spectrometry in positive and negative ion modes, periodate oxidation resistance, linkage analysis by permethylation and gas chromatography-mass spectrometry, and 500 MHz 1H NMR was consistent with the following structure: 9-O Ac-Neu5Ac alpha 2-8Neu5Ac alpha 2-3(GalNAc beta 1-4) Gal beta 1-4Gluc beta 1-1' ceramide Total gangliosides from M21 were analyzed by high performance thin layer chromatography immuno-overlay with monoclonal antibodies D1.1, JONES, 27A, and 8A2, all known to, or suspected of reacting with 9-O-acetylated gangliosides. The first three bound well to 9-O-acetyl-GD3 and a slower migrating 9-O-acetylated ganglioside, which was distinct from 9-O-acetyl-GD2. Antibody 8A2 reacted weakly with purified 9-O-acetyl-GD2 and strongly with two other 9-O-acetylated gangliosides migrating slower than 9-O-acetyl-GD2. Thus, the family of O-acetylated gangliosides in melanoma cells is much more complex than previously appreciated.  相似文献   

17.
We previously showed that a fraction of the acetyls used to synthesize malonyl-CoA in rat heart derives from partial peroxisomal oxidation of very long and long-chain fatty acids. The 13C labeling ratio (malonyl-CoA)/(acetyl moiety of citrate) was >1.0 with 13C-fatty acids, which yields [13C]acetyl-CoA in both mitochondria and peroxisomes and < 1.0 with substrates, which yields [13C]acetyl-CoA only in mitochondria. In this study, we tested the influence of 13C-fatty acid concentration and chain length on the labeling of acetyl-CoA formed in mitochondria and/or peroxisomes. Hearts were perfused with increasing concentrations of labeled docosanoate, oleate, octanoate, hexanoate, butyrate, acetate, or dodecanedioate. In contrast to the liver, peroxisomal oxidation of 1-13C-fatty acids in heart does not form [1-13C]acetate. With [1-13C]docosanoate and [1,12-13C2]dodecanedioate, malonyl-CoA enrichment plateaued at 11 and 9%, respectively, with no detectable labeling of the acetyl moiety of citrate. Thus, in the intact rat heart, docosanoate and dodecanedioate appear to be oxidized only in peroxisomes. With [1-13C]oleate or [1-13C]octanoate, the labeling ratio >1 indicates the partial peroxisomal oxidation of oleate and octanoate. In contrast, with [3-13C]octanoate, [1-13C]hexanoate, [1-13C]butyrate, or [1,2-13C2]acetate, the labeling ratio was <0.7 at all concentrations. Therefore, in rat heart, (i) n-fatty acids shorter than 8 carbons do not undergo peroxisomal oxidation, (ii) octanoate undergoes only one cycle of peroxisomal beta-oxidation, (iii) there is no detectable transfer to the mitochondria of acetyl-CoA from the cytosol or the peroxisomes, and (iv) the capacity of C2-C18 fatty acids to generate mitochondrial acetyl-CoA decreases with chain length.  相似文献   

18.
Dynamic histone acetylation of alfalfa (Medicago sativa) was studied in suspension cultures by short-term labeling with radioactive acetate. The relative labeling rates for the acetylated histones were in order of decreasing incorporation; H3.2 greater than H3.1 greater than H4 greater than H2B.1 greater than H2A.3. Histone H3 showed at least seven sites of acetylation, histone H2B.1 had six sites and histone H4 had five sites. Low numbers of acetylation sites were observed for histone H2B.2 and all histone H2A variants. The mass ratio, steady state acetylation and dynamic acetylation between major variant H3.1 and minor variant H3.2 were approx. 2:1, 1:2 and 2:5, respectively. Treatment of alfalfa cells with 50 mM n-butyrate did not lead to histone hyperacetylation, but instead interfered with histone acetylation labeling by acetate. The extent of apparent inhibition increased with time and concentration of butyrate. It is likely that the conversion of butyrate to acetylCoA results in dilution of the specific radioactivity of [3H]acetate in the acetylCoA pool thereby inhibiting the labeling reaction. This interpretation is supported by 14C-labeling of alfalfa acetylated histones by [1-14C]butyrate.  相似文献   

19.
O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion, followed by fluorescent labeling and detection of quinoxalinone derivatives by chromatography. The results indicated that NeuO is responsible for the majority of capsule modification that takes place in vivo. However, a minor neuO-independent O acetylation pathway was detected that is dependent on the bifunctional polypeptide encoded by neuD. This pathway involves O acetylation of monomeric sialic acid and is regulated by another bifunctional enzyme, NeuA, which includes N-terminal synthetase and C-terminal sialyl O-esterase domains. A homologue of the NeuA C-terminal domain (Pm1710) in Pasteurella multocida was also shown to be an esterase, suggesting that it functions in the catabolism of acetylated environmental sialic acids. Our combined results indicate a previously unexpected complexity in the synthesis and catabolism of microbial sialic and polysialic acids. These findings are key to understanding the biological functions of modified sialic acids in E. coli K1 and other species and may provide new targets for drug or vaccine development.  相似文献   

20.
A cell-free assay has been developed for the delivery of influenza virus neuraminidase to the plasma membrane. Two types of postnuclear supernatant, which acted as donor and acceptor of the enzyme, were prepared from baby hamster kidney cells. Donor preparations were obtained from cells infected with influenza virus and containing neuraminidase en route to the plasma membrane. Acceptor preparations were obtained from cells containing, bound to their plasma membranes, Semliki Forest virus with envelope glycoproteins bearing [3H]N-acetylneuraminic acid. Fusion between vesicles from these two preparations permits access of the enzyme to its substrate, which results in the release of free [3H]N-acetylneuraminic acid. This release was detected through the transfer of radioactivity from a trichloroacetic acid-insoluble to a trichloroacetic acid-soluble fraction. An ATP-dependent component of release was found, which appears to be a consequence of vesicle fusion. This component was enhanced when the donor was prepared from cells in which the enzyme had been concentrated in a compartment between the Golgi complex and the plasma membrane, which indicates that a specific exocytic fusion event has been reconstituted. The extent of fusion is greatly reduced by pre-treatment of donor and acceptor preparations with trypsin, which points to the involvement of proteins in the fusion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号