首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the performance analysis of the anaerobic digestion system at the Regina Wastewater Treatment Plant, it was found that the anaerobic digestion system at the Regina plant was generally operated in a stable condition as indicated by pH, volatile acids and alkalinity levels. The operation of the anaerobic digestion system was not optimal because of the low volatile solids concentration and low volatile solids loading rate, especially because of high HRT. Two options, thickening the primary sludge and increasing the volatile solids loading rate, were recommended for the optimal operation of the digestion system. After examining a number of kinetic models, it was found that the Chen-Hashimoto model could be used to predict the volumetric methane production rate and the first-order model could be used to predict the efficiency of volatile solids reduction. The study showed that utilization of digester gas for power production was the best alternative for the excess digester gas. 13.3% of the electrical demand and 35.5% of the plant's total energy could be met based on digester gas wasted, assuming 25% as the conversion efficiency.  相似文献   

2.
A two-stage anaerobic treatment pilot plant was tested for the treatment of raw domestic wastewater under temperatures ranging from 21 to 14 degrees C. The plant consisted of a hydrolytic upflow sludge bed (HUSB) digester (25.5m3) followed by an upflow anaerobic sludge blanket (UASB) digester (20.36m3). The hydraulic retention time (HRT) varied from 5.7 to 2.8h for the first stage (HUSB digester) and from 13.9 to 6.5h for the second stage (UASB digester). Total suspended solids (TSS), total chemical oxygen demand (TCOD), and biochemical oxygen demand (BOD) removals ranged from 76% to 89%, from 49% to 65%, and from 50% to 77%, respectively, for the overall system. The percentage of influent COD converted to methane was 36.1%, the hydrolysis of influent volatile suspended solids (VSS) reached 59.7% and excess biomass was 21.6% of the incoming VSS. Plant performance was influenced by the wastewater concentration and temperature, yet better results were obtained for influent COD higher than 250mg/l.  相似文献   

3.
The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher that the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes-the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first order kinetics. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria. (c) 1993 Wiley & Sons, Inc.  相似文献   

4.
Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), PHBO, represents a class of PHA copolymers that contain both short-chain-length and medium-chain-length repeat units. Radiolabeled and cold PHBO, containing 90 mol % 3-hydroxybutyrate and 10 mol % 3-hydroxyoctanoate were chemically synthesized using a new difunctional alkoxyzinc initiator. (14)C-PHBO was incubated with samples of anaerobic digester sludge, septage, freshwater sediment, and marine sediment under conditions resembling those in situ. In addition, it was incubated in laboratory-scale landfill reactors. (14)C-PCL (poly-epsilon-caprolactone) was incubated with anaerobic digester sludge and in landfill reactors. Biodegradation was determined by measuring generation of (14)CO(2) and (14)CH(4) resulting from mineralization of the radiolabeled polymers. PHBO was extensively mineralized in digester sludge, septage sediments, and the landfill reactors, with half-lives less than 30 days. PCL was not significantly mineralized in digester sludge over 122 days. In the landfill reactors, PCL mineralization was slow and was preceded by a long lag period (>200 days), suggesting that PCL mineralization is limited by its rate of hydrolysis. The results indicate that PHBO is practically biodegradable in the major anaerobic habitats that it may enter. In contrast, anaerobic biodegradation of PCL is less ubiquitous and much slower.  相似文献   

5.
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.  相似文献   

6.
The applicability of Contois' kinetic equation to aerobic and anaerobic treatments of organic wastes is investigated. A refractory coefficient to account for the nonbiodegradable portion of the organic substrates in the digester is incorporated into the kinetic equation. The kinetic equation is applied to the data for aerobic digestions of organic substrates and for anaerobic treatment of dairy wastes. They all show a very good fit of the kinetic equation to the data. Furthermore, the kinetic parameters and the refractory coefficients are shown to be independent of influent organic substrate concentration. This study confirms previous reports that the effluent quality of biological treatment systems for organic wastes depends on influent organic waste concentration. The effect of temperature on the kinetic parameters and the refractory coefficient for anaerobic treatment of sewage sludge are studied. It shows that the kinetic parameters vary with temperature, while the refractory coefficient remains fairly constant. Equations to predict biodegradable treatment efficiency and volumetric substrate utilization rate are also briefly discussed.  相似文献   

7.
Activated sludge is a widely used aerobic biological waste-water treatment process. A rational approach to least cost design of an integrated system is described which includes the following processes: activated sludge reactor, final settling tanks, gravity thickening, and aerobic sludge digestion. Both capital and operation and maintenance costs are considered. Biological reactor design is based on microbial kinetic concepts and continuous culture of microorganisms theory. Biological solids retention time (θc) is utilized as the primary independent design variable to which system performance is related, e.g., effluent quality, ammonia oxidation, and excess sludge production. Liquid-biomass separation is based on the batch flux technique, a rational approach to design of gravity separators (final settling tanks). Trade-offs among reactor volume, clarifier size, recycle pumping capacity, thickener capacity, digester volume, air requirements, and sludge production are discussed. The optimum design is taken as the combination of these parameters within the acceptable design domain, determined by effluent quality criteria, that results in minimum cost. While the method described is general, design of a given treatment system depends on availability, from lab or pilot studies, of system specific numerical values for biological growth coefficients and biomass setting characteristics. A design example illustrates the approach.  相似文献   

8.
To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C.  相似文献   

9.
Summary The applicability of hydrogenase determinations to the evaluation of hydrogen transfer reactions occurring within methanogenic environments was investigated. Enzymatic hydrogen production was determined in digester sludge, river sediments, and rumen liquid using reduced methyl viologen, formate, and pyruvate as hydrogen donors. Hydrogenase determinations turned out not to be inhibited by toxic compounds present in sediments of the polluted river Saar. Comparative kinetic studies of the conversion of acetate and of hydrogen to methane support the assumption that carbon dioxide reduction by hydrogen accounts for the major part of methane formed in river sediments. In rumen liquid and in river sediments similar enzyme patterns were observed which were different from that found in digester sludge. The rates of methanogenesis correlated well with hydrogenase activities in all ecosystems studied: Correlation coefficients ranged from 0.84 to 0.95. Rumen liquid and river sediments exhibited higher hydrogenase activities than digester sludge when compared at identical rates of methane production. According to these results, the hydrogenase determination is applicable to the evaluation of the hydrogen transfer, occurring within the microbial biomass of anaerobic ecosystems.  相似文献   

10.
Different start-up procedures of an upflow anaerobic sludge bed (UASB) digester were carried out. Start-up without inoculum (experiment A) was delayed for about 120 day. The digester reached 75-85% total suspended solids (TSS) removal, 54-58% total chemical oxygen demand (TCOD) removal and 63-73% biological oxygen demand (BOD5) removal at influent concentrations of 240-340 mg TCODil-1, temperatures of 13.5-15 degrees C and hydraulic retention times (HRT) of 10-11 h. Digested sludge was used as inoculum in experiment B. After the start-up period of 75 days, digester efficiencies were 58%, 41% and 54% for TSS, TCOD and BOD5 removal, respectively, working at 169 mg TCODil-1, temperature of 14 degrees C and HRT of 11 h. The sludge bed developed and stabilised quickly when using a hydraulically adapted inoculum (experiment C), but TCOD and BOD5 removals remained low and volatile fatty acids (VFA) accumulated in the effluent.  相似文献   

11.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

12.
In this study, a comparison of the biodegradation of adsorbed organic halogen compounds (AOX) and polychlorinated biphenyls (PCB) in thermophilic and mesophilic anaerobic digestion (seeded with waste activated sludge) at different hydraulic retention times (HRT 18, 22 and 26 days in the mesophilic digester and 8, 12, 18, 22 and 26 days in the thermophilic digester) was performed. Results obtained in this work showed an enhancement of both PCB and AOX biodegradation under thermophilic conditions. The total PCB removal efficiency was in the range of 59.4–83.5% under thermophilic conditions and 33.0–58.0% under mesophilic conditions. HRT played an important role in the digester performance since high working HRTs implied more reduction of the total PCB amount in the sludge. The total PCB content in the treated sludge under thermophilic conditions lied below the cut-off limit proposed in the 3rd draft of Directive presented to the European Commission [CEC, Working Document on Sludge (3rd Draft), Commission of the European Communities Directorate-General Environment, ENV.E.3/LM, Brussels, 27 April 2000]. Besides, a bioaccumulation of lightly chlorinated PCBs was detected in the mesophilic digester, which is in concordance with the theory that the PCBs are anaerobically biodegraded by means of a reductive dechlorination mechanism. On the other hand, the AOX removal efficiency was in the range of 40.4–50.3% for thermophilic conditions and 30.2–43.2% for mesophilic conditions. The AOX content in the treated sludge of both thermophilic and mesophilic digesters did not exceed the cut-off limit proposed in the 3rd draft [CEC, Working Document on Sludge (3rd Draft), Commission of the European Communities Directorate-General Environment, ENV.E.3/LM, Brussels, 27 April 2000]. Moreover, high HRTs promoted an improvement of the AOX removal capacity of the anaerobic digestion.  相似文献   

13.
A dynamic mathematical model was developed for the simulation of the aerobic treatment of piggery wastewater. This model includes the carbon oxidation, the nitrification and the denitrification. According to the experimental results obtained during this study, a modified version of the activated sludge model No. 1 has been developed. The model includes (1) nitrite as intermediate of nitrification and denitrification, (2) the distinction between the anoxic heterotrophic yield and the aerobic heterotrophic yield, respectively equal to 0.53 and 0.6 and (3) the first-order hydrolysis of the slowly biodegradable fraction. The calibration and the validation of the model was performed using experimental data from three experiments with two piggery wastewaters. A set of kinetic and stoichiometric parameters emerged from these tests. Except the kinetic of hydrolysis of the slowly biodegradable organic matter varying from 6 to 25 gCOD(gCODday)(-1), all other parameters were similar for all experiments. The dissolved oxygen concentration was identified as the main variable influencing the nitrite accumulation during nitrification. In the calibrated model, the oxygen half-saturation coefficient of the ammonium oxidisers (0.3g O(2)m(-3)) was lower than for the nitrite oxidisers (1.1 gO(2)m(-3)), leading to nitrite accumulation when the dissolved oxygen concentration was low. Simulations with the proposed model could be very useful for improved design and management of biological treatment of piggery wastewaters, particularly in case of partial nitrification to nitrite directly followed by denitrification.  相似文献   

14.
The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds with a significant or major fraction of COD as protein. This study assesses the validity of using a common kinetic parameter set and biological catalyst to represent butyrate, n-valerate, and i-valerate degradation in dynamic models. The i-valerate degradation stoichiometry in a continuous, mixed population system is also addressed, extending previous pure-culture and batch studies. A previously published mathematical model was modified to allow competitive uptake of i-valerate, and used to model a thermophilic manure digester operated over 180 days. The digester was periodically pulsed with straight and branched chain butyrate and valerate. Parameters were separately optimized to describe butyrate, i-valerate, and n-valerate degradation, as well as a lumped set optimized for all three substrates, and nonlinear, correlated parameter spaces estimated using an F distribution in the objective function (J). Each parameter set occupied mutually exclusive parameter spaces, indicating that all were statistically different from each other. However, qualitatively, the influence on model outputs was similar, and the lumped set would be reasonable for mixed acid digestion. The main characteristic not represented by Monod kinetics was a delay in i-valerate uptake, and was compensated for by a decreased maximum uptake rate (k(m)). Therefore, the kinetics need modification if fed predominantly i-valerate. Butyrate (i- and n-) and n-valerate could be modeled using stoichiometry consistent with beta-oxidation degradation pathways. However, i-valerate produced acetate only, supporting the stoichiometry of a reaction determined by other researchers in pure culture. Therefore, lumping i-valerate stoichiometry with that of n-valerate will not allow good system representation, especially when the feed consists of proteins high in leucine (which produces i-valerate), and the modified model structure and stoichiometry as proposed here should be used. This requires no additional kinetic parameters and one additional dynamic concentration state variable (i-valerate) in addition to the variables in the base model.  相似文献   

15.
The effect of a continuous supply of a water extract of Moringa oleifera seeds (WEMOS) on the hydrolytic microbial population of biomass grown in mesophilic upflow anaerobic sludge blanket reactors treating domestic wastewater was investigated. The WEMOS-treated sludge had seemingly a wider diversity, with enterobacter and klebsiella as dominant hydrolytic bacteria, compared with the control sludge. Additional tests indicated that various hydrolytic bacteria could degrade WEMOS. It appeared that a continuous supply of WEMOS to an anaerobic digester, treating domestic wastewater, increased the diversity of hydrolytic bacteria and therefore enhanced the biological start-up of the reactor.  相似文献   

16.
In order to reduce the discharge of residual sludge from an anaerobic digester, pre-treatment methods including low-pressure wet-oxidation, Fenton oxidation, alkali treatment, ozone oxidation, mechanical destruction and enzymatic treatment were evaluated and compared. VSS removal efficiencies of greater than 50% were achieved in cases of low-pressure wet-oxidation, Fenton oxidation and alkali treatment. Residual sludge from an anaerobic digester was pre-treated and subjected to thermophilic anaerobic digestion. As a result, the process of low-pressure wet-oxidation followed by anaerobic digestion achieved the highest VSS removal efficiency of 83%. The total efficiency of VSS removal of sewage sludge consisting of primary and surplus sludge would be approximately 92%, assuming that the VSS removal efficiency of sewage sludge is 50% in the anaerobic digester of the sewage treatment plant.  相似文献   

17.
The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100–500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions.  相似文献   

18.
Bioprocess and Biosystems Engineering - Sludge reduction performance and bacterial community dynamics in a pilot-scale multi-stage digester system with prolonged sludge retention time were...  相似文献   

19.
Anaerobic digestion is the key to sustainable wastewater management and bioenergy production. Kinetics plays an important role in the design of bioreactors, processes, and process scale-up in anaerobic digestion. This article focuses on a state-of-the-art literature review on the experimental kinetic studies of conventional anaerobic bioreactors and anaerobic membrane bioreactors. Various kinetic models that were used to fit the experimental data and derive the kinetic parameters are summarized and discussed in the literature. The values of the maximum specific growth rate µmax, half saturation constant Ks, decay co-efficient kd, sludge yield Y, and methane yield YCH4 from experimental studies are summarized for each model. This paper can serve as an updated comprehensive source of anaerobic bio-kinetic studies and digester design.  相似文献   

20.
Phototrophic purple and green bacteria in a sewage treatment plant.   总被引:6,自引:3,他引:3       下载免费PDF全文
In all purification stages of a biological sewage treatment plant, phototrophic bacteria were detected by the method of viable cell counts. The predominant species identified belonged to the genus Rhodopseudomonas of purple nonsulfur bacteria. The number of phototrophic bacteria was highest in wastewater containing sludge. In activated sludge, an average of 10(5) viable cells/ml was found; the number depended upon concentration of sludge rather than on seasonal changes in light conditions in the course of a year. Bacteriochlorophyll a was extracted from activated sludge. Relative to the viable counts of phototrophic bacteria, the content of bacteriochlorophyll a was 5- to 10-fold higher than that of three representative pure cultures. By incubation of activated and digester sludge under different environmental conditions, it was shown that phototrophic bacteria can complete with other bacteria only under anaerobic conditions in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号