首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the microtubular poisons colchicine, vinblastine and nocodazole, on cleavage furrow formation and induction of furrow-like dents in eggs of the newt, Cynops pyrrhogaster , were examined.
Solutions of the poisons were injected beneath the cortex around the small initial furrow, or around the advancing tip of the furrow of eggs during the first cleavage. This resulted in prompt block of the progress of the furrow at the injection site, and subsequent total regression of the furrow or incomplete cleavage.
The ability of the cortex of a cleavage-arrested blastomere to form a furrow-like dent was tested by inhibiting furrow formation of one blastomere of two-cell embryos by injection of the microtubular poisons, and then transplantation of the blastomere under the cortex of the animal half with furrow-inducing cytoplasm (FIC) taken from normally cleaving eggs. No dent was formed. Moreover, FIC from eggs treated with a poison had no ability to induce a dent on the surface of normally cleaving eggs.
These results show that microtubule structures are directly involved in formation of a cleavage furrow.  相似文献   

2.
Sawai (2) found in the amphibian egg that furrow-inducing cytoplasmic component (FIC) was localized along the cleavage furrow, which could induce a furrow on the polar surface of cleaving egg under which FIC was injected. But this procedure failed on the surface of uncleaved fertilized egg. In the present experiments, an attempt was made to induce a cleavage furrow on the surface of uncleaved egg of the newt, Cynops pyrrhogaster. A piece of the cortex was cut from the uncleaved egg, which was transplanted to the egg just before or just after the onset of the cleavage, using a fine glass needle. After the transplantation FIC was injected beneath the graft with a capillary. The graft reacted to FIC and a furrow-like dent was induced at the position. Besides, stiffness of the graft increased during the cleavage of the host egg. In contrast to the cortical grafting, a large amount of the cytoplasm excluding FIC was injected under the cortex of an uncleaved egg. After several minutes FIC was deposited at the site. A furrow-like dent was formed there in many cases.  相似文献   

3.
From Cynops pyrrhogaster eggs just after the start of the first cleavage, a fragment of cortical layer with a small entire cleavage furrow was cut out. In the fragment, the cortex had already acquired susceptibility to and the subcortical cytoplasm had already accquired inducibility for furrow formation. The fragment was transplanted to the animal hemisphere of uncleaved fertilized eggs or eggs immediately after the onset of the first cleavage, from which a portion of the host cortex was removed. Observation was made on division of the graft, and on propagation of the cortical susceptibility and the cytoplasmic inducibility of the graft onto the host egg. The transplant divided succesively on the host egg in many cases, but the furrow of the graft never advanced to the surface of the host egg. Neither the cortical factor nor the cytoplasmic factor was transmitted across the graft to the recipient egg.  相似文献   

4.
It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by injection of dibromoBAPTA or EGTA into the eggs at a concentration sufficient to suppress the Ca waves. Furthermore, even smaller classes of Ca release such as Ca puffs and Ca blips do not occur at the growing end of the cleavage furrow. These observations demonstrate that localized Ca signals in the cleavage furrow are not involved in cytokinesis. The two Ca waves have unique characteristics. The first wave propagates only in the region of newly inserted membrane along the cleavage furrow. On the other hand, the second wave propagates along the border of new and old membranes, suggesting that this wave might be involved in adhesion between two blastomeres.  相似文献   

5.
1. The development of the amphiaster is associated with the formation of two semisolid masses within the more fluid egg substance. 2. The elongation of the egg during cleavage is possibly produced as a consequence of the mutual pressure of these two growing semisolid masses. 3. The division of the egg into two blastomeres consists essentially in a growth, within the egg, of two masses of material at the expense of the surrounding cytoplasm. When all the cytoplasm of the egg is incorporated in these two masses cleavage occurs. 4. After a certain period of time the semisolid masses revert to a more fluid state. In the eggs studied this normally occurs after the cleavage furrow has completed the separation of the two blastomeres. The formation of the furrow, however, may be prevented in various ways, upon which the egg reverts to a single spherical semifluid mass containing two nuclei. 5. An egg mutilated during its semisolid state (amphiaster stage) may or may not revert to a more fluid state. If the more solid state is maintained, the cleavage furrow persists and proceeds till cleavage is completed. If the mutilation causes the egg to revert to the more fluid state the furrow becomes obliterated and a new cleavage plane is subsequently adopted. 6. The nuclei of eggs in the semifluid state are able to alter their positions. In semifluid mutilated eggs the nuclei tend to move to positions which may assure symmetry in aster formation and cleavage.  相似文献   

6.
The effects of three protein phosphatase inhibitors, okadaic acid, calyculin A and tautomycin, on the formation of cleavage furrows and the induction of furrow-like dents in the egg of the newt, Cynops pyrrhogaster , were examined. Solutions of the individual compound were injected into the animal hemisphere of one of the two presumptive blastomere regions of the embryo during the first cleavage. Injection of a solution containing any of the chemicals often disturbed the formation of a normal furrow in the injected blastomere at second cleavage. Injection with okadaic acid or calyculin A often induced furrow-like dents on the surface of the injected blastomere at the same time as second cleavage in control embryos, while that with tautomycin usually did not induce them. In an injected blastomere, formation of dents started in the animal half and moved towards the vegetal half as the furrow in its counterpart blastomere extended from the animal half towards the vegetal. Dents gradually became slightly deeper and formed cytoplasmic projections that later degenerated, leaving a surface scar. Cytological observations on blastomeres injected with calyculin A revealed that nuclear division occurred normally.  相似文献   

7.
Furrow Formation in the Vegetal Hemisphere of Xenopus Eggs   总被引:1,自引:1,他引:0  
The mechanism of furrow formation in the vegetal hemisphere of amphibian eggs was studied using Xenopus eggs. Injection of colchicine into the eggs after the furrow tip had entered the vegetal hemisphere arrested the subsequent cleavage. The effect of impairing the continuity between the animal and vegetal hemispheres was examined by squeezing the equator of uncleaved eggs from both sides with the edges of coverslips. On gentle squeezing a shallow vegetal furrow was formed at the first cleavage, whereas on strong squeezing furrowing was arrested at the equator. The mechanism of furrow formation in the vegetal hemisphere of amphibian eggs is discussed on the basis of these findings.  相似文献   

8.
We describe an embryonic lethal mutation in Xenopus laevis that provokes regression of cleavage furrow formation. The mutant females (designated as af) were obtained by the back-cross of a female with one of her sons. All the fertilized eggs laid by the mutant females, regardless of the wild-type male used in the mating, failed to cleave although each furrow ran at a proper position superficially. Light and electron microscopic observations of the embryos revealed that the cleavage furrows stayed on the surface and cytoplasmic divisions did not take place at all, while nuclear divisions did. Two-dimensional gel-electrophoretic comparisons of af and wild-type embryos demonstrated that two proteins, having estimated molecular masses of about 38 kDa (pI 6.6) and 78 kDa (pI 7.6), were missing in af embryos. Microinjection of clear cytoplasm from a wild-type egg into fertilized af eggs provoked partial surface contraction and cleavage furrow formation in recipient af eggs. The results showed that the af females carry a lethal maternal-effect mutation which causes cleavage furrow regression by being deficient in a few proteins, and that cytoplasm of wild-type eggs can partially rescue the cleavage furrow formation of af eggs by furnishing the corrective material, presumably a product of the normal allele of af.  相似文献   

9.
Eggs of Triturus alpestris were horizontally compressed at times before first and second cleavage in an experiment designed to measure the time at which the mitotic apparatus determines the direction of the subsequent cleavage furrow. The results showed that furrow determination was completed 0.46 Dettlaff units before the onset of furrowing. When a comparison was made of the times of furrow determination before cleavage in eggs of different animal groups using Dettlaff units, the results supported the idea that preparations for furrowing proceed differently in echinoderm eggs from eggs of sturgeon and amphibia.  相似文献   

10.
Sea-urchin blastomeres have two domains of the plasma membrane which can be distinguished immunocytochemically. An egg-surface antibody (anti-ES), which binds to the membrane of the entire surface region of eggs before cleavage, binds to the membrane of the outer surface region of blastomeres after cleavage, but not to that of the cleavage furrow region or interblastomeric surface region.
The anti-ES binding sites on the egg membrane were chased after cleavage by labeling the egg plasma membrane with FITC conjugated monovalent anti-ES (FITC-Fab anti-ES) before the first cleavage, and then allowing the eggs to cleave. The surface fluorescence increased in intensity in the cleavage furrow region with progress of furrowing, but after completion of the furrowing, the fluorescence became uniform and finally decreased in the interblastomeric surface region.
The distributions of pigment granules and NBD-phallacidin stainable microfilaments in the cortex after completion of furrowing were polarized in the same way as the anti-ES binding area. As cytochalasin B completely inhibited the polarization in both the surface and cortical layer but colchicine did not, polarization of the anti-ES binding area was concluded to be due to the post-cleavage polarized distribution of submembranous microfilaments in the cortical layer.  相似文献   

11.
The intracellular distribution of calcium and phosphorus during metaphase and anaphase of the first cleavage in sea urchin eggs was studied with the electron-probe microanalyzer. This study allowed a comparison of the relative concentrations of both elements on the polar and cleavage furrow regions of the membrane and on the mitotic asters and cytoplasm. The results show that in most eggs, both calcium and phosphorus are more highly concentrated in the mitotic asters than in surrounding cytoplasm during both anaphase and metaphase. Calcium is more concentrated at the furrow region than at the polar region during metaphase but not anaphase. The role of calcium during mitosis was reviewed with special reference to the theories on the formation of the cleavage furrow along the equatorial zone between two mitotic centers.  相似文献   

12.
How actin filaments (F-actin) and myosin II (myosin) assemble to form the contractile ring was investigated with fission yeast and Xenopus egg. In fission yeast cells, an aster-like structure composed of F-actin cables is formed at the medial cortex of the cell during prophase to metaphase, and a single F-actin cable(s) extends from this structure, which seems to be a structural basis of the contractile ring. In early mitosis, myosin localizes as dots in the medial cortex independently of F-actin. Then they fuse with each other and are packed into a thin contractile ring. At the growing ends of the cleavage furrow of Xenopus eggs, F-actin at first assembles to form patches. Next they fuse with each other to form short F-actin bundles. The short bundles then form long bundles. Myosin seems to be transported by the cortical movement to the growing end and assembles there as spots earlier than F-actin. Actin polymerization into the patches is likely to occur after accumulation of myosin. The myosin spots and the F-actin patches are simultaneously reorganized to form the contractile ring bundles. The idea that a Ca signal triggers cleavage furrow formation was tested with Xenopus eggs during the first cleavage. We could not detect any Ca signals such as a Ca wave, Ca puffs or even Ca blips at the growing end of the cleavage furrow. Furthermore, cleavages are not affected by Ca-chelators injected into the eggs at concentrations sufficient to suppress the Ca waves. Thus we conclude that formation of the contractile ring is not induced by a Ca signal at the growing end of the cleavage furrow.  相似文献   

13.
In the first cleavage of the egg of the newt, Cynops(Triturus) pyrrhogaster, some sort of preparation for the furrow formation in the cortical and subcortical cytoplasm precedes the advancing tip of the cleavage furrow. This is shown by the following facts: (1) Incisions made close to the tip of the cleavage furrow do not stop the progress of furrowing, allowing the furrow to cross the incisions and appear on the farther sides, while incisions made far enough from the furrow tip always prevent the further travelling of the furrow, (2) Displacement of the subcortical cytoplasm ahead of the furrow by rubbing with a hair loop makes the furrow bend corresponding to the width of the rubbed area, and (3) Transplantation of the subcortical material of the furrow tip to lateral parts in the same egg causes a depression in the overlying cortex at the transplanted position. The linear extension of the prepared area for the furrow formation is the longest in the animal hemisphere and it decreases in gradient towards the vegetal pole.  相似文献   

14.
The first cleavage in the freshwater oligochaete Tubifex hattai is unequal and meridional, and produces a smaller cell AB and a larger cell CD. This study traces the process of furrow formation, reorganization of cortical F-actin and the assembly of a mitotic apparatus during this unequal division. Cleavage furrow formation consists of two stages: (i) when eggs are viewed from the animal pole, meridionally running furrows emerge at two points of the egg's equator that are 90° apart from each other and approach the egg axis as they deepen; and (ii) at the midpoint between the equator and the egg center, the bottoms of these furrows link to each other on the animal and vegetal surfaces of the egg and form a continuous ring of constriction in a plane parallel to the egg axis. Egg cortices, isolated during the first step and stained with rhodamine-phalloidin, show that the bottoms of recently formed furrows are underlaid by a belt of tightly packed actin bundles (i.e. a contractile arc). The transition to the second stage of furrow formation coincides with the conversion of these actin belts into a continuous ring of F-actin. Whole-mount immunocytochemistry of microtubules reveals that the first cleavage in Tubifex involves an asymmetric mitotic spindle, which initially possesses an aster at one pole but not the other. This ‘monastral’ spindle is located at the egg's center and orients itself perpendicular to the egg axis. During anaphase, astral rays elongate to reach the cell surface, so that the array of astral microtubules in the plane of the egg's equator covers a sector of 270–300°. In contrast, it is not until the transition to telophase that microtubules emanating from the anastral spindle pole approach the cell margin. If eggs are compressed along the egg axis or forced to elongate, they form monastral spindles and divide unequally. In living compressed eggs, mitotic spindles, which are recognizable as bright streaks at the egg's center, appear not to shift their position along the spindle axis during division, suggesting that without eccentric migration of spindles Tubifex eggs are able to divide unequally. These results suggest that mechanisms that translocate the mitotic spindle eccentrically do not operate in Tubifex eggs during the first cell cycle. The mechanisms that generate asymmetry in spindle organization are discussed in the light of the present results.  相似文献   

15.
16.
In the physiologically polyspermic eggs of the newt, Cynops pyrrhogaster, a number of accessory sperm undergo pronuclear formation along with a concomitant DNA synthesis, but degenerate after zygote nucleus formation. When denuded eggs were divided into two halves at various post-fertilization stages, the andromerogons produced before zygote nucleus formation but not after that stage cleaved at a high frequency. The accessory sperm were unable to participate in the cleavage when they were located in the half of the egg which was connected with the diploid merogon by a cytoplasmic bridge higher than 100 μm in height. The removal of the egg nucleus or the retardation of early post-fertilization nuclear events by treatment with cycloheximide resulted in the induction of multipolar cleavage. Continuous exposure of the fertilized eggs to aphidicolin showed that in the appreciable absence of the DNA synthesis many eggs underwent a first cleavage cytokinesis of a mostly abortive type, but failed to initiate the following cytokinesis at all. Cytological examinations in association with these experiments suggest that the observed suppression of accessory sperm includes the inhibition of centriolar replication under the influence of the zygote nucleus, resulting in the failure of cytasters corporating with nuclear-independent activity of cortical cytoplasm.  相似文献   

17.
The exposure of new surface membrane occurred in the cleavage furrow of Rana amurensis eggs enclosed in fertilization membrane immersed in Brij solution. The exposed area increased gradually and reached a maximum while the furrow extended to 240 degrees around the egg surface. At this time, the new membrane area of the treated eggs was significantly larger than that of the control. Afterwards, the exposed new membrane area decreased gradually. This may result from the extent of new membrane increase being less than the extent of contraction of cleavage furrow.  相似文献   

18.
In the eggs of the newt, Cynops (Triturus) pyrrhogaster, change in stiffness of the cortex was measured in various regions at the time of the cleavage. Measurements were performed by Mitchison and Swann's cell elastimeter method with a modification, in which two fine pipettes were attached to the surface of one egg at the same time, in order to compare the rigidity of two regions. The stiffness of the cortex changed very little before the start of the first cleavage. However, just before the appearance of the first cleavage furrow, the stiffness increased rapidly at the animal pole region, which later returned to the former level. As the cleavage furrow progressed, a wave of high stiffness travelled meridionally as a belt along the surface from the animal pole region toward the vegetal region. At second cleavage, the cycle of change in stiffness was repeated.  相似文献   

19.
The correlation between autonomous cyclic activity of the cytoplasm (cytoplasmic cycle) and the cleavage cycle was studied by using animal and vegetal half fragments of newt eggs formed by bisecting the uncleaved eggs after those eggs had been rotated through 90° off the vertical axis so as to alter the allocations of the cytoplasmic content in the two halves. When the bisection was made shortly after the rotation (Early Bisection), the resulting vegetal fragment showed 1.5 times longer intervals in the cytoplasmic cycle than its animal partner when cleavage was prevented by injection of colchicine, while when the bisection was made 30 min after the rotation (Late Bisection), the resulting pair of halves displayed equal intervals in the cytoplasmic cycle. The intervals of cell division of vegetal halves formed by the two kinds of bisection in the absence of colchicine were then examined. In these conditions, the vegetal half formed by Early Bisection still showed 1.5 times longer intervals in the cleavage cycle than its counterpart, and the half formed by Late Bisection displayed the same intervals in the cleavage cycle as its animal partner.  相似文献   

20.
Changes in the cortical organization at the animal pole are examined by scanning and transmission electron microscopy in the Tubifex egg undergoing second polar body formation. At very early anaphase of the second meiosis, the egg surface overlying the meiotic apparatus is undulated, but its neighboring surface appears to be smooth. Although a microfilamentous cortical layer is found in the smooth area, the cortical layer of the undulating area is thin and devoid of filamentous structures except for its central part where some filaments are observed. This local differentiation takes place normally in colchicine-treated eggs where the meiotic apparatus is destroyed. Along with the progression of the anaphase movement, the egg surface of the undulating area is, first, uplifted into a cone-shaped cytoplasmic bulge (presumptive polar body); then the height and surface area of the bulge gradually increase. The distal surface of the growing bulge appears to be undulated whereas the sides of the bulge are relatively smooth. Transmission electron microscopy reveals that a thick microfilamentous cortical layer is always localized at the proximal region of this bulge; other regions of the bulge are characterized by a thin cortical layer which is devoid of filamentous structure except for the apical portion of the bulge. Microfilaments at the base of the bulge are perpendicular or oblique to the egg surface. The cortical layer of the egg which is continuous to that of the proximal region of the bulge comprises microfilaments running parallel to the surface. The attainment of the bulge to its full size is followed by the development of the cleavage furrow along its base. The cleavage furrow appears to bisect the spindle midway between its poles. In cytochalasin B-treated eggs, where some cortical microfilaments are detected at the animal pole, a cytoplasmic bulge lower in height and wider in the diameter of its base than the normal one forms at the animal pole; however, it is subsequently resorbed into the egg. The formation of a cleavage furrow is not observed in these eggs. The mechanism of the polar body formation is discussed in the light of the present observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号