首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%–86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.  相似文献   

2.
Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition.  相似文献   

3.

Background

The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet.

Results

We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules.

Conclusions

We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host.  相似文献   

4.
The ubiquitous SAR11 bacterial clade is the most abundant type of organism in the world's oceans, but the reasons for its success are not fully elucidated. We analysed 128 surface marine metagenomes, including 37 new Antarctic metagenomes. The large size of the data set enabled internal transcribed spacer (ITS) regions to be obtained from the Southern polar region, enabling the first global characterization of the distribution of SAR11, from waters spanning temperatures ?2 to 30°C. Our data show a stable co‐occurrence of phylotypes within both ‘tropical’ (>20°C) and ‘polar’ (<10°C) biomes, highlighting ecological niche differentiation between major SAR11 subgroups. All phylotypes display transitions in abundance that are strongly correlated with temperature and latitude. By assembling SAR11 genomes from Antarctic metagenome data, we identified specific genes, biases in gene functions and signatures of positive selection in the genomes of the polar SAR11—genomic signatures of adaptive radiation. Our data demonstrate the importance of adaptive radiation in the organism's ability to proliferate throughout the world's oceans, and describe genomic traits characteristic of different phylotypes in specific marine biomes.  相似文献   

5.
The SAR11 clade, here represented by Candidatus Pelagibacter ubique, is the most successful group of bacteria in the upper surface waters of the oceans. In contrast to previous studies that have associated the 1.3 Mb genome of Ca. Pelagibacter ubique with the less than 1.5 Mb genomes of the Rickettsiales, our phylogenetic analysis suggests that Ca. Pelagibacter ubique is most closely related to soil and aquatic Alphaproteobacteria with large genomes. This implies that the SAR11 clade and the Rickettsiales have undergone genome reduction independently. A gene flux analysis of 46 representative alphaproteobacterial genomes indicates the loss of more than 800 genes in each of Ca. Pelagibacter ubique and the Rickettsiales. Consistent with their different phylogenetic affiliations, the pattern of gene loss differs with a higher loss of genes for repair and recombination processes in Ca. Pelagibacter ubique as compared with a more extensive loss of genes for biosynthetic functions in the Rickettsiales. Some of the lost genes in Ca. Pelagibacter ubique, such as mutLS, recFN, and ruvABC, are conserved in all other alphaproteobacterial genomes including the small genomes of the Rickettsiales. The mismatch repair genes mutLS are absent from all currently sequenced SAR11 genomes and also underrepresented in the global ocean metagenome data set. We hypothesize that the unique loss of genes involved in repair and recombination processes in Ca. Pelagibacter ubique has been driven by selection and that this helps explain many of the characteristics of the SAR11 population, such as the streamlined genomes, the long branch lengths, the high recombination frequencies, and the extensive sequence divergence within the population.  相似文献   

6.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

7.
8.
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.  相似文献   

9.
Microbes and their associated viruses are key drivers of biogeochemical processes in marine and soil biomes. While viruses of phototrophic cyanobacteria are well-represented in model systems, challenges of isolating marine microbial heterotrophs and their viruses have hampered experimental approaches to quantify the importance of viruses in nutrient recycling. A resurgence in cultivation efforts has improved the availability of fastidious bacteria for hypothesis testing, but this has not been matched by similar efforts to cultivate their associated bacteriophages. Here, we describe a high-throughput method for isolating important virus–host systems for fastidious heterotrophic bacteria that couples advances in culturing of hosts with sequential enrichment and isolation of associated phages. Applied to six monthly samples from the Western English Channel, we first isolated one new member of the globally dominant bacterial SAR11 clade and three new members of the methylotrophic bacterial clade OM43. We used these as bait to isolate 117 new phages, including the first known siphophage-infecting SAR11, and the first isolated phage for OM43. Genomic analyses of 13 novel viruses revealed representatives of three new viral genera, and infection assays showed that the viruses infecting SAR11 have ecotype-specific host ranges. Similar to the abundant human-associated phage ɸCrAss001, infection dynamics within the majority of isolates suggested either prevalent lysogeny or chronic infection, despite a lack of associated genes, or host phenotypic bistability with lysis putatively maintained within a susceptible subpopulation. Broader representation of important virus–host systems in culture collections and genomic databases will improve both our understanding of virus–host interactions, and accuracy of computational approaches to evaluate ecological patterns from metagenomic data.Subject terms: Bacteriophages, Microbial ecology  相似文献   

10.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

11.
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.  相似文献   

12.
Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world's oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS) revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral sequences within microbial fractions, the prevalence of genes among viral sequences that encode microbial physiological function and their distinct phylogenetic distribution lend strong support to the notion that viral-mediated gene acquisition is a common and ongoing mechanism for generating microbial diversity in the marine environment.  相似文献   

13.
The candidate order “Pelagibacterales” (SAR11) is one of the most abundant bacterial orders in ocean surface waters and, periodically, in freshwater lakes. The presence of several stable phylogenetic lineages comprising “Pelagibacterales” correlates with the physico-chemical parameters in aquatic environments. A previous amplicon sequencing study covering the bacterial community in the salinity gradient of the Baltic Sea suggested that pelagibacteral subclade SAR11-I was replaced by SAR11-IIIa in the mesohaline region of the Baltic Sea. In this current study, we investigated the cellular abundances of “Pelagibacterales” subclades along the Baltic Sea salinity gradient using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The results obtained with a newly designed probe, which exclusively detected SAR11-IIIa, were compared to CARD-FISH abundances of the marine SAR11-I/II subclade and the freshwater lineage SAR11-IIIb (LD12). The results showed that SAR11-IIIa was abundant in oligohaline–mesohaline conditions (salinities 2.7–13.3), with maximal abundances at a salinity of 7 (up to 35% of total Bacteria, quantified with a universal bacterial probe EUB). As expected, SAR11-I/II was abundant (27% of EUB) in the marine parts of the Baltic Sea, whereas counts of the freshwater lineage SAR11-IIIb were below the detection limit at all stations. The shift from SAR11-IIIa to SAR11-I/II was confirmed in the vertical salinity gradient in the deeper basins of the Baltic Sea. These findings were consistent with an overlapping but defined distribution of SAR11-I/II and SAR11-IIIa in the salinity gradient of the Baltic Sea and suggested the adaptation of SAR11-IIIa for growth and survival in mesohaline conditions.  相似文献   

14.
In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.  相似文献   

15.
Although the SAR11 clade of the Alphaproteobacteria represents the most abundant and ubiquitous bacterioplankton in the ocean, very few laboratories have successfully cultured SAR11 cells. All of the SAR11 strains isolated thus far have been retrieved from the Oregon coast and the Sargasso Sea. In this study, a modified dilution-to-extinction culturing with prolonged incubation at low temperature was applied in an effort to cultivate major bacterioplankton lineages in the East Sea, Western Pacific Ocean. Five to 10 cells were inoculated into each well of 48-well plates, followed by the incubation of the plates at 10 °C for 4, 8, 20, and 24 weeks. Among a total of 35 isolated strains, 18 strains assigned to the SAR11 clade were isolated after 8, 20, and 24 weeks of incubation, whereas no SAR11 cells were detected in the samples after 4 weeks of incubation. The SAR11 isolates, noticeably, comprised 64–82% of the total isolates from the plates incubated for 20 and 24 weeks. Extinction cultures belonging to the Roseobacter , OM43, and SAR92 clades were also cultivated. The results of this study suggest that long-term incubation at low temperatures might prove an alternative for the efficient cultivation of new variants of the members of the SAR11 clade.  相似文献   

16.
Bacterioplankton are major biogeochemical agents responsible for mediating the flux of dissolved organic matter (DOM) and subsequent cycling of nutrients in the oceans. Most information about the composition of bacterioplankton communities has come from studies along well-defined biogeochemical gradients in the northern hemisphere. This study extends observations of spatial and temporal dynamics for SAR11, Actinobacteria and OCS116 in the North Atlantic by demonstrating distinct spatial variability in the abundance and distribution of these and other lineages across the South Atlantic gyre and in the Benguela upwelling system. We identified shifts in SAR11, Actinobacteria, OCS116, SAR86, SAR116 and members of the Roseobacter clade along basin-scale gradients in nutrients, chlorophyll and dissolved organic carbon (DOC). Distinct SAR11 subclades dominated the western and eastern regions of the gyre, and Actinobacteria, OCS116 and members of the Roseobacter lineages were most abundant at the deep chlorophyll maxima. SAR86 and SAR116 accounted for a significant fraction of coastal and open ocean communities, respectively, and members of the gamma sulfur oxidizer (GSO) clade persisted in the Benguela upwelling system. These data suggest that distinct communities are partitioned along basin-scale biogeochemical gradients, that SAR11 community structure varies across the gyre and that Actinobacteria, OCS116, and members of the Roseobacter clade are closely associated with phytoplankton in the gyre.  相似文献   

17.
18.
The extent to which cultured strains represent the genetic diversity of a population of microorganisms is poorly understood. Because they do not require culturing, metagenomic approaches have the potential to reveal the genetic diversity of the microbes actually present in an environment. From coastal California seawater, a complex and diverse environment, the marine cyanobacteria of the genus Synechococcus were enriched by flow cytometry-based sorting and the population metagenome was analysed with 454 sequencing technology. The sequence data were compared with model Synechococcus genomes, including those of two coastal strains, one isolated from the same and one from a very similar environment. The natural population metagenome had high sequence identity to most genes from the coastal model strains but diverged greatly from these genomes in multiple regions of atypical trinucleotide content that encoded diverse functions. These results can be explained by extensive horizontal gene transfer presumably with large differences in horizontally transferred genetic material between different strains. Some assembled contigs showed the presence of novel open reading frames not found in the model genomes, but these could not yet be unambiguously assigned to a Synechococcus clade. At least three distinct mobile DNA elements (plasmids) not found in model strain genomes were detected in the assembled contigs, suggesting for the first time their likely importance in marine cyanobacterial populations and possible role in horizontal gene transfer.  相似文献   

19.
The deeply branching clade of abundant, globally distributed aquatic α-Proteobacteria known as “SAR11”, are adapted to nutrient-poor environments such as the surface waters of the open ocean. Unknown prior to 1990, uncultured until 2002, members of the SAR11 clade can now be cultured in artificial, defined media to densities three orders of magnitude higher than in unamended natural media. Cultivation in natural and defined media has confirmed genomic and metagenomic predictions such as an inability to reduce sulfate to sulfide, a requirement for pyruvate, an ability to oxidize a wide variety of methylated and one-carbon compounds for energy, and an unusual form of conditional glycine auxotrophy. Here we describe the metabolism of the SAR11 type strain Candidatus “Pelagibacter ubique” str. HTCC1062, as revealed by genome-assisted studies of laboratory cultures. We also describe the discovery of SAR11 and field studies that have been done on natural populations.  相似文献   

20.
Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: ‘Candidatus Elulimicrobium humile’ (‘Ca. Elulimicrobiota’, ‘Patescibacteria’) and ‘Candidatus Aquidulcis frankliniae’ (‘Chloroflexi’). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号