首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三峡库区不同植被类型土壤养分特征   总被引:18,自引:6,他引:18       下载免费PDF全文
通过三峡库区8个植被类型370个样地的群落调查和土壤分析,研究了不同植被类型、土壤类型、海拔对表层土壤有机质及全氮、速效磷、速效钾含量的影响.结果表明:(1)三峡库区不同植被类型土壤有机质、全氮平均含量规律为阔叶林>竹林>针叶林>灌丛>草丛,森林土壤有机质及全氮平均含量丰富;速效磷平均含量表现为草丛>落叶阔叶林>灌丛>暖性针叶林>常绿落叶阔叶混交林>温性针叶林>竹林>常绿阔叶林,草丛与其他植被类型差异显著;速效钾平均含量表现为常绿落叶阔叶混交林>落叶阔叶林>灌丛>针叶林>竹林>草丛>常绿阔叶林,竹林、草丛、常绿阔叶林与常绿落叶阔叶混交林、落叶阔叶林、灌丛、针叶林差异显著.(2)不同土壤类型养分含量差异显著,黄棕壤中有机质、全氮含量高,分别为6.83%、0.44%,紫色土中速效磷含量高,达到54.24mg/kg.(3)随海拔升高,有机质、全氮含量呈明显增加趋势,速效磷、速效钾含量变化趋势不明显.  相似文献   

2.
3.
彭海英  李小雁  童绍玉 《生态学报》2014,34(9):2256-2265
灌丛化是全球草原地区存在的主要环境问题。通过对内蒙古典型草原区小叶锦鸡儿灌丛和草地斑块冠层降雨再分配、地表径流、土壤含水量的对比观测,研究了小叶锦鸡儿灌丛化对该区水分再分配和利用的影响。结果表明,灌丛和草地斑块的冠层截留量分别占降雨量的20.86%和7.88%,灌丛和草地斑块的平均地表径流系数分别为5.95%和17.19%。土壤含水量观测结果显示,0—60 cm土层中,降雨事件过程中,灌丛斑块较草地斑块能捕获更多水分,灌丛斑块植被冠层下方土壤含水量高于草地斑块;而在雨后无有效降水补充土壤水分的前提下,0—60 cm土层中,灌丛斑块土壤水分蒸散发量高于草地斑块,其中0—10cm土层中灌丛斑块土壤水分蒸散发速率低于草地斑块,10—60 cm土层中灌丛斑块土壤水分蒸散发速率高于草地斑块。研究认为,在水分为关键性限制因子的干旱半干旱区,小叶锦鸡儿灌丛化过程增加草原生态系统中水分分布的空间异质性,灌丛斑块能捕获、利用更多水分以维持更多的生物量。  相似文献   

4.
内蒙古温带典型草原围封十年草灌景观格局动态   总被引:2,自引:1,他引:1       下载免费PDF全文
通过样方调查和差分GPS法,研究内蒙古典型草原围封10年后灌木和草本盖度、生物量动态以及植被时空分布格局的变化。结果显示:草本盖度和生物量以2010年为拐点先减少后增加,灌木盖度和生物量呈现增加的趋势,样地整体植被生产力显著恢复。2010年以后,样地景观格局发生变化,小叶锦鸡儿灌丛斑块表现出破碎化程度和蔓延度先增加后减少的趋势。研究认为:(1)2012年之前为干旱期,草本生产力下降,且灌、草之间的竞争关系加剧了这一过程。(2)2012年之后降水增加,草本生产力先于灌木迅速恢复;景观尺度上小叶锦鸡儿灌丛斑块破碎化程度达到最高,是小叶锦鸡儿克隆生长的扩张过程所致。(3)2012年之后为湿润时期,小叶锦鸡儿对草本的生长存在促进作用,使生态系统逐渐恢复和重建。  相似文献   

5.
Phenology is central to understanding vegetation response to climate change, as well as vegetation effects on plant resources, but most temporal production data is based on shoots, especially those of trees. In contrast, most production in temperate and colder regions is belowground, and is frequently dominated by grasses. We report root and shoot phenology in 7‐year old monocultures of 10 dominant species (five woody species, five grasses) in southern Canada. Woody shoot production was greatest about 8 weeks before the peak of root production, whereas grass shoot maxima preceded root maxima by 2–4 weeks. Over the growing season, woody root, and grass root and shoot production increased significantly with soil temperature. In contrast, the timing of woody shoot production was not related to soil temperature (r=0.01). The duration of root production was significantly greater than that of shoot production (grasses: 22%, woody species: 54%). Woody species produced cooler and moister soils than grasses, but growth forms did not affect seasonal patterns of soil conditions. Although woody shoots are the current benchmark for phenology studies, the other three components examined here (woody plant roots, grass shoots and roots) differed greatly in peak production time, as well as production duration. These results highlight that shoot and root phenology is not coincident, and further, that major plant growth forms differ in their timing of above‐ and belowground production. Thus, considering total plant phenology instead of only tree shoot phenology should provide a better understanding of ecosystem response to climate change.  相似文献   

6.
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years.  相似文献   

7.
We evaluated how three co‐occurring tree and four grassland species influence potentially harvestable biofuel stocks and above‐ and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m?2 or 394 g C m?2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m?2 or 137 g C m?2 yr). Quercus ellipsoidalis accrued 850 g C m?2, Q. macrocarpa 370 g C m?2, Poa pratensis 390 g C m?2, Solidago canadensis 132 g C m?2, and Lespedeza capitata 283 g C m?2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ?21.3 to +169.8 g C m?2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground.  相似文献   

8.
全球气候变化背景下,荒漠草原人工灌丛引入加速其灌丛化进程,对草原土壤水分产生重要影响。为了解宁夏东部荒漠草原灌丛引入过程中土壤水分动态及亏缺现状,选取了封育草地、放牧草地、不同年限(3a、12a、22a)和间距(40 m、6 m、2 m)灌丛柠条(Caragana korshinskii)地进行土壤水分测定,并利用土壤水分相对亏缺指数(compared soil water deficit index,CSWDI)、样地土壤水分相对亏缺指数(plot compared soil water deficit index,PCSWDI)对土壤水分亏缺进行定量分析。结果表明:灌丛引入过程中不同年限、间距灌丛地0—200 cm土层土壤含水量均显著低于封育草地与放牧地(P<0.05);各样地季节动态均表现为春季返潮、夏季消耗、秋季蓄积的季节规律,但不同年限、间距灌丛地表现为春季返潮微弱,土壤含水量仅为7.80%—10.90%,显著低于封育草地和放牧地(11.90%—16.09%);灌丛引入过程中各灌丛地0—100 cm有效储水量(-16.98—18.69 mm)均低于封育草地(34.67 ...  相似文献   

9.
Scarce information is available on the biological reasons why a small subset of introduced species can effectively establish within novel ecosystems. A comparison of early growth traits can help to explain the better performance of alien invasive species versus native co-occurring species. In one year-long experiment, we compared the early life stages of Ampelodesmos mauritanicus (Poir.) Dur. & Schinz (Amp), a native perennial Mediterranean grass, and Pennisetum setaceum (Forssk.) Chiov (Penn), an emerging invader grass in sub-arid and Mediterranean-climate areas. The Penn seedlings grew significantly faster and were approximately 2.5 times taller than the Amp seedlings, reaching a final average height of 90 cm. The shoot and root dry masses of the Penn seedlings were, respectively, more than 14 times and 4 times higher than those of the Amp seedlings. As a consequence, the shoot:root ratio was significantly higher in Penn, which resulted in a greater allocation of resources to the photosynthetic organs. Penn showed a more rapid life cycle compared with Amp. Penn produced seeds 9 months after sowing while no spikelet was produced by Amp until the end of the experiment. As a consequence, Penn may gain a reproductive advantage due to rapid seed dissemination. Ultimately, a suite of peculiar early growth traits makes Penn an aggressive competitor against Amp, which is an important floristic element of native Mediterranean grasslands. Penn seems better suited than Amp in colonizing frequently disturbed sites with fluctuating resource availability or irregular rainfall distribution and Penn is gradually replacing Amp.  相似文献   

10.
    
Bush encroachment is reported from savannah regions worldwide. Different management strategies are used to rehabilitate these areas. In this context, the mutual interaction between vegetation and large herbivore's distribution is evident. We studied effects of land management on vegetation structure in regard to encroaching species and the subsequent habitat use of two grazing (oryx, Oryx gazella L.; common warthog, Phacochoerus africanusGmelin ) and one browsing (greater kudu, Tragelaphus strepsicerosPallas ) herbivore species. We assumed that (i) cleared areas will be favoured by grazers and (ii) noncleared areas will be favoured by browsers. Specifically, we asked: Which factors determine the habitat use of these different feeding guilds? Consistently with our expectations, we found that warthog favoured sites with high grass cover. For oryx, surprisingly shrubs with a height of 80–150 cm influenced their distribution positively, whereas for kudu, only the interaction of site and grass cover was significant in our models. However, this was related to the occurrence of shrubs of 80–150 cm height. We conclude that the management of encroachers, resulting in differences in vegetation, did not influence herbivore distribution as expected. Other factors like human impact and vegetation cover among others are discussed as additional drivers of habitat use.  相似文献   

11.
12.
    
Aims Woody plant encroachments in arid and semiarid ecosystems are widely reported but the physiological mechanisms still need to be further revealed. In the current study, we aim to determine whether differences in leaf physiological traits help explain grassland susceptibility to woody plant encroachment and whether distinctive physiological adaptations allow some shrub species to invade grasslands.Methods We compared physiological traits (photosynthesis, leaf water status, pigment compositions and leaf antioxidant capacities) of six species representing three functional groups: woody encroachers (Prosopis velutina, Larrea tridentata), woody non-encroachers (Acacia greggii, Lycium fremontii) and C4 grasses (Bouteloua curtipendula, Bouteloua barbata) which are naturally growing in a botanical garden in University of Arizona, USA.Important findings We infer that P. velutina (encroacher) but not A. greggii or L. fremontii (non-encroachers) is encroaching in grasslands because the former species has higher water and light utilization efficiencies (instantaneous water use efficiency, instantaneous light use efficiency, and Fv/Fm). The extremely high carotenoid and total antioxidant capacity in its leaves appears to help the shrub L. tridentata (encroacher) survive high ambient oxidative damage caused by both drought and high light stresses in this grassland. The two C4 grass species, B. curtipendula and B. barbata, grow well in the arid ecosystem but may be susceptible to disturbances.  相似文献   

13.
Ecosystem carbon stocks and their changes in China’s grasslands   总被引:5,自引:0,他引:5  
The knowledge of carbon (C) stock and its dynamics is crucial for understanding the role of grassland ecosystems in China’s terrestrial C cycle. To date, a comprehensive assessment on C balance in China’s grasslands is still lacking. By reviewing published literature, this study aims to evaluate ecosystem C stocks (both vegetation biomass and soil organic C) and their changes in China’s grasslands. Our results are summarized as follows: (1) biomass C density (C stock per area) of China’s grasslands differed greatly among previous studies, ranging from 215.8 to 348.1 g C m−2 with an average of 300.2 g C m−2. Likewise, soil C density also varied greatly between 8.5 and 15.1 kg C m−2. In total, ecosystem C stock in China’s grasslands was estimated at 29.1 Pg C. (2) Both the magnitude and direction of ecosystem C changes in China’s grasslands differed greatly among previous studies. According to recent reports, neither biomass nor soil C stock in China’s grasslands showed a significant change during the past 20 years, indicating that grassland ecosystems are C neutral. (3) Spatial patterns and temporal dynamics of grassland biomass were closely correlated with precipitation, while changes in soil C stocks exhibited close associations with soil moisture and soil texture. Human activities, such as livestock grazing and fencing could also affect ecosystem C dynamics in China’s grasslands.  相似文献   

14.
彭海英  李小雁  童绍玉 《生态学报》2013,33(22):7221-7229
通过样方调查,研究了内蒙古典型草原不同退化程度草地中小叶锦鸡儿 (Caragana microphylla Lam.)灌丛斑块空间分布格局、草地生物量及生物多样性特征。结果表明,从轻度到中度、重度退化草地,草本植物生物量呈减少趋势,小叶锦鸡儿生物量呈增加趋势,总生物量呈先减少后增加趋势;灌丛斑块生物多样性呈增加趋势,草地斑块生物多样性呈先减少后增加趋势,其中轻度退化草地中灌丛斑块生物多样性低于草地斑块,中度和重度退化草地中灌丛斑块生物多样性高于草地斑块。本研究认为,内蒙古典型草原灌丛化过程中,生态系统可能存在草本植物占优势或小叶锦鸡儿占优势这样两种稳定状态,这两种状态能维持较高生物量和生物多样性,而在由草本植物占优势向小叶锦鸡儿占优势转化的过渡阶段,系统不稳定,仅能维持较低生物量和生物多样性。  相似文献   

15.
Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people.This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.  相似文献   

16.
在库布齐沙漠东段选取人工油蒿+杨柴半灌木混交林、人工柠条锦鸡儿灌木林和人工沙柳灌木林3种人工固沙灌木林为对象,以流动沙地为对照,研究了不同人工固沙灌木林土壤微生物生物量碳和氮、土壤微生物数量、土壤养分变化特征及其相互间的关系,并运用综合指数法对不同人工固沙灌木林的土壤恢复效果进行评价.结果表明: 与流动沙地相比,3种人工固沙灌木林土壤有机质、全氮、全磷、速效氮、速效磷含量均有不同程度的提高,表现为油蒿+杨柴林地>柠条锦鸡儿林地>沙柳林地,且均随土层加深而依次降低;3种人工固沙灌木林土壤微生物数量、微生物生物量碳和氮均较流动沙地有不同程度的提高,油蒿+杨柴林地土壤微生物生物量碳氮和细菌相对数量高于柠条锦鸡儿林地和沙柳林地,而真菌与放线菌相对数量则表现为柠条锦鸡儿林地>沙柳林地>油蒿+杨柴林地;影响3种人工固沙灌木林土壤细菌相对数量、微生物生物量碳和氮的因素是土壤有机质、全氮、全磷、速效氮、速效磷含量及C/N,而放线菌、真菌相对数量主要受土壤全磷、速效氮和速效磷含量的影响;不同人工固沙灌木林土壤质量排序为:油蒿+杨柴林地>柠条锦鸡儿林地>沙柳林地>流动沙地,表明不同人工固沙灌木林的建植均能提高沙漠土壤质量,其中营造油蒿+杨柴半灌木混交林对提高土壤综合质量效果最好.  相似文献   

17.
    
Vegetation species composition and structure are known to affect taxonomic composition and life‐history characteristics of arthropod communities. Soil conditions alter vegetation composition and structure, and thus, soils have indirect effects on arthropods. Whilst grassland management affects soil properties, and hence vegetation, the direct effects of soil on arthropod communities within the sward are less clear. We used a long‐term hay meadow experiment to assess both direct and indirect effects of various fertilizer regimes on arthropod community composition and feeding guilds. Arthropods were sampled via pitfall traps and sweep nets and then analysed using principal components and redundancy analyses (RDA) to determine relationships between soil properties, vegetation community, forage quality and arthropod community. Vegetation community composition, measured by the first vegetation principal component, was used as a constraining variable in partial RDA, to estimate direct effects of soil on the arthropods. Variance partitioning quantified the relative roles of vegetation and soil on the arthropod community. Our results indicate that available soil nitrogen and carbon–nitrogen ratios are important determinants of arthropod community composition. Once the effects of the vegetation were removed, it was found the soil acidity and the available potassium altered arthropod community composition. Further research is required to determine the mechanisms by which these soil properties affect arthropod communities.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号