首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial alginates: biosynthesis and applications   总被引:3,自引:0,他引:3  
Alginate is a copolymer of β-d-mannuronic acid and α-l-guluronic acid (GulA), linked together by 1–4 linkages. The polymer is a well-established industrial product obtained commercially by harvesting brown seaweeds. Some bacteria, mostly derived from the genus Pseudomonas and belonging to the RNA superfamily I, are also capable of producing copious amounts of this polymer as an exopolysaccharide. The molecular genetics, regulation and biochemistry of alginate biosynthesis have been particularly well characterized in the opportunistic human pathogen Pseudomonas aeruginosa, although the biochemistry of the polymerization process is still poorly understood. In the last 3 years major aspects of the molecular genetics of alginate biosynthesis in Azotobacter vinelandii have also been reported. In both organisms the immediate precursor of polymerization is GDP-mannuronic acid, and the sugar residues in this compound are polymerized into mannuronan. This uniform polymer is then further modified by acetylation at positions O-2 and/or O-3 and by epimerization of some of the residues, leading to a variable content of acetyl groups and GulA residues. In contrast, seaweed alginates are not acetylated. The nature of the epimerization steps are more complex in A. vinelandii than in P. aeruginosa, while other aspects of the biochemistry and genetics of alginate biosynthesis appear to be similar. The GulA residue content and distribution strongly affect the physicochemical properties of alginates, and the epimerization process is therefore of great interest from an applied point of view. This article presents a survey of our current knowledge of the molecular genetics and biochemistry of bacterial alginate biosynthesis, as well as of the biotechnological potential of such polymers. Received: 14 March 1997 / Received revision: 7 May 1997 / Accepted: 11 May 1997  相似文献   

2.

Pure culture biofilms of Pseudomonas aeruginosa (strains 8830 and ATCC 700829) and mixed population biofilms composed of Pseudomonas aeruginosa (ATCC 700829), Pseudomonas fluorescens (ATCC 700830), and Klebsiellapneumoniae (ATCC 700831) were treated with an alginate‐degrading enzyme (AlgL). The enzyme effectively depolymerized the mannuronic acid rich (92%), partially O‐acetylated bacterial alginate produced by P. aeruginosa (8830), both in dilute solution and in a gel‐like, concentrated state. However, both biofilms were unaffected by the presence of the enzyme. These findings suggest either that bacterial alginates do not contribute significantly to the cohesiveness of biofilms or that the alginate is protected from enzymatic degradation in biofilms.  相似文献   

3.
Summary Saprophytic and plant pathogenic fluorescent pseudomonads are possible sources of bacterial alginates to be used as substitutes for algal alginates for certain commercial applications. In this study, a total of 115 strains of fluorescentPseudomonas species (P. cichorii, P. fiuorescens, P. syringae andP. viridiflava) were tested for yields of alginates when grown in batch culture in a proprietary liquid medium (PLM). The PLM contained either fructose or glucose (both at 5%, w/v) as the primary carbon and energy source. For comparison, selected strains were also grown in a modified Vogel and Bonner medium (MVBM) containing gluconate (5%, w/v) and formulated to support maximal alginate production by the human pathogenP. aeruginosa. After five days of incubation at 24°C with shaking (250–300 r.p.m.), alginates were harvested from the culture fluids by precipitation with three volumes of isopropanol. Maximum yields of alginates, based on assays for uronic acid content of precipitable material, were 5 g L–1 for PLM with fructose, 3 g L–1 for PLM with glucose and 9 g L–1 for MVBM.Reference to a brand or firm name does not constitute an endorsement by the US Department of Agriculture over others of a similar nature not mentioned.  相似文献   

4.
For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa.  相似文献   

5.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

6.
Production of a thick exopolysaccharide coat (alginate) by mucoid strains ofPseudomonas aeruginosa has been shown to contribute to the pathogenicity and persistence of these bacteria in the lungs of patients with cystic fibrosis. Previous studies have shown that some mucoidP. aeruginosa strains produce an enzyme(s) capable of degrading this alginate coat. In this study, an alginate lyase from mucoidP. aeruginosa strain WcM#2 was isolated and characterized. Lyase production was enhanced by the addition of 0.2–0.3m NaCl to the growth media. The lyase was eluted from an alginate-Sepharose affinity column with 0.5m NaCl, which can serve as a simple one-step purification protocol for obtaining semi-pure functional alginate lyase. Fractionation of the enzyme preparation on a Sephadex G-75 sizing column showed that the enzyme has an apparent molecular weight of 40,000, whereas sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) suggested a molecular weight of approximately 43,000. The affinity-purified enzyme had a pH optimum of 9.0, its activity was enhanced in the presence of 0.3m NaCl, and it showed substrate specificity for polymannuronic acid blocks. These results demonstrate the presence of a mannuronan-specific alginate lyase inP. aeruginosa that differs in several respects from previous reports ofP. aeruginosa alginate lyases.  相似文献   

7.
The Japanese brown seaweed Sargassum muticum, recently invaded several shorelines worldwide including the Atlantic coast of Morocco with large well‐established populations. Within the framework of a sustainable strategy to control this invasive seaweed, we report on extraction yield, spectroscopic characterization and rheological properties of alginate, a commercially valuable colloid, from harvested biomass of S. muticum. Extraction yield was about 25.6% on dry weight basis. Infrared spectroscopy analysis shows that the obtained Fourier transform infrared spectra of the extracted biopolymer exhibit strong similarities with that of the commercial alginate. Furthermore, Proton nuclear magnetic resonance spectroscopy revealed that S. muticum alginate has almost equal amounts of β‐D‐mannuronic acid (M; 49%) and α‐L‐guluronic acid (G; 51%) with an M/G ratio of 1.04 and a high content of heteropolymeric MG GM diads suggesting a sequence distribution of an alternated polymer type. Rheological measurements were performed at different sodium alginate concentrations, temperatures and shear rates. The hydrocolloid exhibited pseudoplastic behavior and showed shear thinning, particularly at high solution concentration and low temperature which is consistent with the rheological behavior reported for commercial alginates. Considering the abundance of S. muticum in the Northwestern Atlantic coast of Morocco and the quality of the extracted hydrogel, this invasive species could be considered as a potential source of alginates.  相似文献   

8.
Alginates are polysaccharides that are used as thickening agents, stabilizers, and emulsifiers in various industries. These biopolymers are produced by fermentation with a limited understanding of the processes occurring at the cellular level. The objective of this study was to evaluate the effects of agitation rate and inlet sucrose concentrations (ISC) on alginate production and the expression of the genes encoding for alginate-lyases (algL) and the catalytic subunit of the alginate polymerase complex (alg8) in chemostat cultures of Azotobacter vinelandii ATCC 9046. Increased alginate production (2.4 g l−1) and a higher specific alginate production rate (0.1 g g−1 h−1) were obtained at an ISC of 15 g l−1. Carbon recovery of about 100% was obtained at an ISC of 10 g l−1, whereas it was close to 50% at higher ISCs, suggesting that cells growing at lower sucrose feed rates utilize the carbon source more efficiently. In each of the steady states evaluated, an increase in algL gene expression was not related to a decrease in alginate molecular weight, whereas an increase in the molecular weight of alginate was linked to higher alg8 gene expression, demonstrating a relationship between the alg8 gene and alginate polymerization in A. vinelandii for the first time. The results obtained provide a possible explanation for changes observed in the molecular weight of alginate synthesized and this knowledge can be used to build a recombinant strain able to overexpress alg8 in order to produce alginates with higher molecular weights.  相似文献   

9.
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ22). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.  相似文献   

10.
Summary To exploit alginate lyase which could degrade bacterial alginates, degenerate PCR and long range-inverse PCR (LR-IPCR) were used to isolate alginate lyase genes from soil bacteria. Gene algL, an alginate lyase-encoding gene from Pseudomonas sp. QD03 was cloned, and it was composed of a 1122 bp open reading frame (ORF) encoding 373 amino acid residues with the calculated molecular mass of 42.2 kDa. The deduced protein had a potential N-terminal signal peptide of 20 amino acid residues that was consistent with its proposed periplasmic location. Gene algL was expressed in pET24a (+)/E. coli BL21 (DE3) system. The recombinant AlgL was purified to electrophoretic homogeneity using affinity chromatography. The molecular weight of AlgL was estimated to be 42.8 kDa by SDS-PAGE. AlgL exhibited maximal activity at pH 7.5 and 37 °C. Na+, K+, Ca2+ and Ba2+ significantly enhanced the activity of AlgL. AlgL could degrade alginate and mannuronate blocks, but hardly degrade guluronate blocks. In particular, AlgL could degrade acetylated alginate of Pseudomonas aeruginosa FRD1 (approximately 0.54 mol of O-acetyl group per mol of alginate). It might be possible to use alginate lyase AlgL as an adjuvant therapeutic medicine for the treatment of disease associated with P. aeruginosa infection.  相似文献   

11.
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillus thuringiensis strain Israelis as well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.  相似文献   

12.
There is evidence that exopolysaccharides (EPS) contribute to the persistence of Pseudomonas aeruginosa in cystic fibrosis lung. However, the relationship between the chemical composition of EPS and the modulation of phagocytic cells is poorly understood. In order to evaluate the role of the chemical composition of EPS in macrophage behavior changes, we pretreated macrophages with characterized EPS and assessed P. aeruginosa phagocytosis and reactive oxygen intermediate (ROI) production. The results showed that alginate and neutral polysaccharides are involved in phagocytic impairment of P. aeruginosa. Moreover, alginates were able to prime macrophages for increased P. aeruginosa-induced macrophage oxidative burst as determined by chemiluminescence. In contrast, neutral polysaccharides are responsible for the decrease of ROI by a scavenging effect evaluated by the xanthine–xanthine oxidase system. This study showed that the content of P. aeruginosa EPS in alginate, but also in neutral polysaccharides, influences the behavior of strains towards phagocytosis and macrophage oxidative burst.  相似文献   

13.
In this study, three alginate fractions with different molecular weights and ratios of mannuronic acid (M) to guluronic acid (G) were prepared by enzymatic hydrolysis and ultrafiltration to assess the antioxidant property of alginates from Laminaria japonica with molecular weight below 10 kDa. The antioxidant properties of different molecular weight alginates were evaluated by determining the scavenging abilities on superoxide, hydroxyl, and hypochlorous acid and inhibitory effect on Fe2+-induced lipid peroxidation in yolk homogenate. The results showed that low molecular weight alginates exhibited high scavenging capacities on superoxide, hydroxyl, and hypochlorous acid radicals and good inhibition of Fe2+-induced lipid peroxidation in yolk. By comparison, alginate A1 with molecular weight below 1 kDa and M/G of 1.84 had better scavenging activity on superoxide, hydroxyl, and hypochlorous acid radicals in vitro than A2 (1–6 kDa), A3 (6–10 kDa), ascorbic acid, and carnosine. With similar M/G ratio, A2 exhibited better antioxidant activity on superoxide and hypochlorous acid radicals than A3. However, fraction A3 with molecular weight of 6–10 kDa exhibited higher inhibitory ability on lipid peroxidation in yolk in vitro than A1 and A2. The results indicated that molecular weight played a more important role than M/G ratio on alginate to determine the antioxidant ability. By comparison, low molecular weight alginates composed of guluronic acid and mannuronic acid exhibited better antioxidant ability on oxygen free radicals than sulfated polysaccharides from L. japonica in our previous study and represent a good source of marine polysaccharide with potential application as natural antioxidant.  相似文献   

14.
The aim of this study is to investigate the involvement of an efflux pump in the development of Pseudomonas aeruginosa resistance to zinc pyrithione (ZnPT). In the presence of efflux inhibitor carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the minimum inhibitory concentration of ZnPT for P. aeruginosa resistant cells is reduced significantly (p < 0.05). In addition, the concentration of ZnPT excluded by the resistant bacteria was reduced significantly (p < 0.01). However, the above reductions did not reach the levels measured for P. aeruginosa PAO1 sensitive strain. Furthermore, such changes in P. aeruginosa resistant cells were correlated with the overexpression of outer membrane proteins, reduced sensitivity toward imipenem (p < 0.01) and increased sensitivity toward sulphatriad and chloramphenicol (p < 0.05). In a continuation to a previous study, we conclude that P. aeruginosa resistance to ZnPT is multifactorial and involves induced efflux systems. Suzanne Abdel Malek is currently on leave from Petra University, and a member at the Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.  相似文献   

15.
16.
Using the pUT-miniTn5 vector system developed by the laboratory of K.N. Timmis, the Vitreoscilla hemoglobin gene (vgb) was integrated into the chromosomes of Pseudomonas aeruginosa and Burkholderia cepacia; Vitreoscilla hemoglobin (VHb) was expressed at 8.8 and 0.8 nmol/g wet weight of cells in the respective engineered strains. The vgb-bearing P. aeruginosa outgrew wild-type P. aeruginosa and degraded benzoic acid faster than the latter strain at both normal and low aeration. In contrast, the vgb-bearing B. cepacia strain had a growth advantage over the wild-type strain at ca. 90 ppm, but not at ca. 120 ppm 2,4-dinitrotoluene (DNT); no difference in DNT degradation was seen between the two strains at either normal or low aeration. The results demonstrate the practicality of enhancing bioremediation with vgb stably integrated into the chromosome, but also suggest that a minimal level of VHb expression is required for its beneficial effects to be seen. Journal of Industrial Microbiology & Biotechnology (2001) 27, 27–33. Received 20 October 2000/ Accepted in revised form 04 May 2001  相似文献   

17.
Pseudomonas aeruginosa as an opportunistic pathogen causes lethal infections in immunocompromised individuals. This bacterium possesses a polar flagellum made up of flagellin subunits. Flagella have important roles in motility, chemotaxis, and establishment of P. aeruginosa in acute phase of infections. Isolation, cloning, and expression of flagellin were aimed at in this study. Flagellin gene (fliC) of P. aeruginosa strain 8821M was isolated by PCR and cloned into a pET expression vector. The recombinant flagellin (46 kDa) was overexpressed as inclusion bodies (IBs). IBs were solubilized in guanidine hydrochloride (GuHCl) followed by affinity-purification and renatured using Ni2+-Sepharose resin. Recombinant flagellins reacted with the serum from a rabbit previously immunized with native flagellin. In addition, polyclonal antiserum raised against the recombinant flagellin was shown to significantly inhibit the cell motility of P. aeruginosa strain 8821M in vitro.  相似文献   

18.
Pseudomonas aeruginosa secretes an extracellular lipase (EC 3.1.1.3), which has been isolated from culture media of either industrial fermentation of wild-type P. aeruginosa PAC1R or an overexpressing P. aeruginosa strain carrying a plasmid with the cloned lipase gene. Both culture supernatants contained enzymatically active lipase protein, as demonstrated by determination of hydrolytic activity using p-nitrophenylpalmitate and 1,2-O-dilauryl-rac-glycero-3-glutaric acid resorufin ester as substrates and analysis by sodium dodacyl sulphate/polyacrylamide electrophoresis and Western blotting. Immobilization by entrapment into chemically inert hydrophobic silica gels was tested with crude enzyme preparations. A matrix consisting of tetramethoxysilane and propyltrimethoxysilane at a molar ratio of 1 : 5 yielded the highest enzyme activity as determined by esterification of lauric acid with 1-octanol in isooctane. The biotechnological potential of P. aeruginosa lipase to catalyse the kinetic resolution of chiral compounds was tested by enantioselective acylation of two different model compounds, racemic 1-phenylethanol and 2-pentylamine. Both compounds were acylated with high efficiency giving enantiomeric excess rates of more than 99% for the alcohol and 96% for the amine with an average conversion rate of 50%. These results demonstrated that P. aeruginosa lipase is an extremely useful enzyme for application in synthetic organic chemistry. Received: 5 February 1996/Received revision: 1 April 1996/Accepted: 15 April 1996  相似文献   

19.
Low electron transfer efficiency from bacteria to electrodes remains one of the major bottlenecks that limit industrial applications of microbial fuel cells (MFCs). Elucidating biological mechanism of the electron transfer processes is of great help in improving the efficiency of MFCs. Here, we reported that Pseudomonas aeruginosa could use different electron shuttles in a MFC under different quorum sensing (QS) expression patterns. An electron shuttle (rather than phenazines) with a high mid-point potential of 0.20 V (vs. Ag/AgCl–KCl saturated electrode) was found to be the dominating shuttle in a wild-type P. aeruginosa strain. Strikingly, upon genetic overexpression of rhl QS system in this wild-type strain, the electron shuttle was substituted by phenazines (pyocyanin and phenazine-1-carboxylate, with a low mid-point potential of −0.17 V and −0.28 V, respectively), which directly resulted in an increase of about 1.6 times of the maximum current of the rhl overexpressed strain over the wild-type strain. Our result implied that manipulating electron transfer pathways to improve MFCs’ efficiency could be achieved by rewiring gene regulatory circuits, thus synthetic biology strategies would be adopted.  相似文献   

20.
Matrix polysaccharide from the brown algae Sargassum turbinarioides collected in the coastal waters of Nosy Be (Madagascar) in the Indian Ocean was isolated and its structure was studied by 1H-NMR spectroscopy, FT-IR, SEC-MALLS and HPAEC. An alginate with a molecular weight of 5.528 × 105 g mol−1 was identified as sole polysaccharide. Values of the M/G ratio, F GG, F MM and F GM (or F GM) blocks were measured at respectively 0.94, 0.39, 0.36 and 0.25 and compared with those of alginates from other Sargassum species. This sodium alginate appeared similar to some of the other Sargassum alginates with M/G < 1, high values of homopolymeric blocks (η < 1) and significant polyguluronic block content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号