首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
An optical resolution of the amide derivatives of ibuprofen and the carbamate-alkylester derivatives of the trans-alcohol metabolite of loxoprofen and an analogous compound, CS-670, was studied by chiral high-performance liquid chromatography (HPLC). The chiral columns SUMIPAX OA-4000 and OA-4100 were used to investigate the enantiomeric separation behavior of these derivatives using both reversed and normal mobile phases. A better separation factor (α) of the amide and the carbamate ester derivatives was obtained in the normal mobile phase than in the reversed mobile phase HPLC. In addition, the recognition mechanisms of both amide and carbamate ester enantiomers were investigated by 1H-nuclear magnetic resonance (NMR). It is suggested that the important driving forces for the enantiomeric separation are the formation of hydrogen bonding and the charge transfer complex between these derivatives and an active site of the chiral stationary phase. © 1995 Wiley-Liss, Inc.  相似文献   

4.
《Chirality》2017,29(9):512-521
Six novel regioselectively substituted amylose derivatives with a benzoate at 2‐position and two different phenylcarbamates at 3‐ and 6‐positions were synthesized and their structures were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Their enantioseparation abilities were then examined as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after they were coated on 3‐aminopropyl silica gels. Investigations indicated that the substituents at the 3‐ and 6‐positions played an important role in chiral recognition of these amylose 2‐benzoate serial derivatives. The derivatives demonstrated characteristic enantioseparation and some racemates were better resolved on these derivatives than on Chiralpak AD, which is one of the most efficient CSPs, utilizing coated amylose tris(3,5‐dimethylphenylcarbamate) as the chiral selector. Among the derivatives prepared, amylose 2‐benzoate‐3‐(phenylcarbamate/4‐methylphenylcarbamate)‐6‐(3,5‐dimethylphenylcarbamate) exhibited chiral recognition abilities comparable to that of Chiralpak AD and may be useful CSPs in the future. The effect of mobile phase on chiral recognition was also studied. In general, with the decreased concentration of 2‐propanol, better resolutions were obtained with longer retention times. Moreover, when ethanol was used instead of 2‐propanol, poorer resolutions were often achieved. However, in some cases, improved enantioselectivity was achieved with ethanol rather than 2‐propanol as the mobile phase modifier.  相似文献   

5.
Recently, we reported the development of new chiral stationary phases (CSPs) for liquid chromatography (LC) based on chiral derivatives of xanthones (CDXs). Based on the most promising CDX selectors, 12 new CSPs were successfully prepared starting from suitable functionalized small molecules including xanthone and benzophenone derivatives. The chiral selectors comprising one, two, three, or four chiral moieties were covalently bonded to a chromatographic support and further packed into LC stainless-steel columns (150 × 2.1 mm I.D.). The enantioselective performance of the new CSPs was evaluated by LC using different classes of chiral compounds. Specificity for enantioseparation of some CDXs was observed in the evaluation of the new CSPs. Besides, assessment of chiral recognition mechanisms was performed by computational studies using molecular docking approach, which are in accordance with the chromatographic parameters. X-Ray analysis was used to establish a chiral selector 3D structure.  相似文献   

6.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

7.
To obtain milligram amounts of the enantiomers of benzoxazolinone derivatives to be tested for binding to adrenergic sites, analytical HPLC methods using derivatized amylose chiral stationary phases were developed for the direct enantioseparation of benzoxazolinone aminoalcohols and their aminoketone precursors, derivatives with one or two chirals centers. The separations were made using normal phase methodology with a mobile phase of n‐hexane‐alcohol (ethanol, 1‐propanol, or 2‐propanol) in various proportions, and silica‐based amylose (tris‐3, 5‐dimethylphenylcarbamate) Chiralpak AD and (tris‐(S)‐1‐phenylethylcarbamate) Chiralpak AS columns. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The best separation was achieved on Chiralpak AS, so preparative HPLC was set up with this chiral stationary phase using a mobile phase consisting of n‐hexane‐alcohol using isocratic conditions and multiple repetitive injections. Physicochemicals properties of enantiomers were reported The effect of structural features of the solutes on discrimination between the enantiomers was examined. Limit of detection (LD) and limit of quantification (LQ) were determined using both ultra‐violet (UV) and evaporative light‐scattering detection (ELSD). Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Kubota T  Yamamoto C  Okamoto Y 《Chirality》2002,14(5):372-376
Cyclopentyl and (+/-)-exo-2-norbornylcarbamates of cellulose and amylose were prepared and their chiral recognition abilities as chiral stationary phases for high-performance liquid chromatography (HPLC) were evaluated. Among these carbamates, cellulose tris(cyclopentylcarbamate) and amylose tris((+/-)-exo-2-norbornylcarbamate) showed particularly high chiral recognition, which is comparable to that of several well-known phenylcarbamate derivatives. The chiral recognition mechanism of cellulose tris(cyclohexylcarbamate), which was previously found to be an effective chiral stationary phase for HPLC, was investigated using NMR spectroscopy. The derivative dissolved in chloroform exhibited the chiral discrimination of several enantiomers in NMR as well as in HPLC. For example, the 1,1'-bi-2-naphthol enantiomers were distinctly discriminated in the (1)H, (13)C, and 2D-NOESY spectra.  相似文献   

9.
Lai XH  Bai ZW  Ng SC  Ching CB 《Chirality》2004,16(9):592-597
Two chiral stationary phases, ph-alpha-CD and ph-gamma-CD, were prepared from mono(6(A)-azido-6(A)-deoxy)perphenylcarbamoylated alpha- and gamma-cyclodextrin immobilized onto silica gel via the Staudinger reaction. The chromatographic characteristics of these two chiral stationary phases were evaluated. The influence of different cyclodextrins (CDs) on the enantioselectivities was also investigated in this study. Compared to ph-gamma-CD, ph-alpha-CD exhibited quite good enantioselectivity toward the analytes with bulky molecular structures. It was found that the formation of inclusion complex might play a quite important role in the chiral recognition not only under reverse phases but also under normal phases.  相似文献   

10.
A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

11.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

12.
13.
(Z)-1,1-Dichloro-2-(4-benzyloxyphenyl)-2,3-bis(4-methoxyphenyl)cyclopropane ( 5 ), a potential antitumor agent designed to treat breast cancer, was prepared in three steps. A stereospecific palladium-catalyzed cross coupling reaction which provided the intermediate (Z)-triaryl alkene 4 was a crucial step in the synthesis. Makosza phase transfer reaction on 4 gave the enantiomeric (Z)-dichlorocyclopropane derivatives 5 which were resolved by semipreparative HPLC on a chiral stationary phase consisting of amylose tris-3,5-dimethylphenyl carbamate coated on silica gel. © 1994 Wiley-Liss, Inc.  相似文献   

14.
《Chirality》2017,29(6):239-246
The enantioselective potential of two polysaccharide‐based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris‐(3,5‐dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose‐based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose‐based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose‐based chiral stationary phase were achieved particularly with propane‐2‐ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO2, respectively. Methanol and basic additive isopropylamine were preferred on amylose‐based chiral stationary phase. The complementary enantioselectivity of the cellulose‐ and amylose‐based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest.  相似文献   

15.
An overall view on some new chiral stationary phases based on (trans)-1,2-diaminocyclohexane is illustrated. The selected chiral moiety, derivatized with different aroyl groups, has been linked to a silica matrix in order to give chiral stationary phases (CSPs) enabling them to be used efficiently in the normal and reverse phase, both for analytical and preparative purposes. In addition new polymeric CSPs have been prepared by using the same selector, suitably modified, as monomer. The new chiral stationary phases have been characterised by physicochemical methods and used for the resolution of various racemic compounds classes such as α-aryloxyacetic acids, alcohols, sulfoxides, selenoxides, phosphinates, tertiaryphosphine oxides, benzodiazepines etc. without prederivatization or as amines, amino acids, amino alcohols, nonsteroidal antiinflammatory agents in a derivatized form. The separated solutes structural variety suggests that multiple interaction sites are involved in the recognition process: some thermodynamic data relative to the CSPs—selectands interactions are also illustrated. © 1992 Wiley-Liss, Inc.  相似文献   

16.
The separation of enantiomers of 16 basic drugs was studied using polysaccharide‐based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate‐based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β‐blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase. Chirality 27:228–234, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Separation of enantiomers of a thiazolbenzenesulfonamide compound was performed on a Chiralpak AD column using subcritical fluid chromatography. Effects of alcohol modifier and temperature on the separations were studied. The results revealed that while the main adsorbing interactions were between the hydroxyl group of the analyte and the carbamate group of the stationary phase, chiral discrimination was achieved through an inclusion mechanism within the chiral cavity created along the amylose chains. Analogs and synthetic precursors of the thiazolbenzenesulfonamide studied were also investigated so as to understand the effect of functional groups and configuration of the analyte molecule upon chiral recognition.  相似文献   

18.
Ten novel xylan bisphenylcarbamate derivatives bearing meta‐ and para‐substituents on their phenyl groups were synthesized and their chiral recognition abilities were evaluated as the chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after coating them on macroporous silica. The chiral recognition abilities of these CSPs depended on the nature, position, and number of the substituents on the phenyl moieties. The introduction of an electron‐donating group was more attractive than an electron‐withdrawing group to improve the chiral recognition ability of the xylan phenylcarbamate derivatives. Among the CSPs discussed in this study, xylan bis(3,5‐dimethylphenylcarbamate)‐based CSP seems to possess the highest resolving power for many racemates, and the meta‐substituted CSPs showed relatively better chiral recognition than the para‐substituted ones. For some racemates, the xylan bis(3,5‐dimethylphenylcarbamate) derivative exhibited higher enantioselectivity than the CSP based on cellulose tris(3,5‐dimethylphenylcarbamate). Chirality 27:518–522, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan‐based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R‐napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6‐RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7‐DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U‐shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π–π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode. Chirality 27:64–70, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
A chiral anion-exchanger stationary phase based on cinchonidine (CD) was developed. Two columns were packed with and without endcapping (EC) treatment (CD-chiral stationary phase[CD-CSP(EC)] and [CD-CSP], respectively) and studied for their ability to separate N-2,4-dinitrophenyl α-amino acids (DNP-amino acids) enantiomers over a temperature range of 10-40 °C with a hydro-organic buffer mobile phase. The more hydrophobic, endcapped stationary phase showed significantly larger retentive capacity than the non-endcapped one. The apparent thermodynamic transfer parameters of the enantiomers from the mobile to both CSPs were estimated from van't Hoff plots within the cited temperature range. Similar studies with two natural quinine-based columns (QN-CSP and QN-CSP(EC)) were previously reported. In this work, a critical comparison in the chiral recognition ability to DNP-amino acids of these cinchonidine and QN-based chiral columns was drawn. It has been found that QN-based CSPs show greater chiral recognition capability towards these derivatives than CD-CSPs. The influence of the QN methoxy group on the equilibrium constants of the enantioselective interaction between these DNP-amino acids with these two cinchona CSPs could be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号