首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The glucan-binding protein-A (GbpA) of Streptococcus mutans has been shown to contribute to the architecture of glucan-dependent biofilms formed by this species and influence virulence in a rat model. As S. mutans synthesizes multiple glucosyltransferases and nonglucosyltransferase glucan-binding proteins (GBPs), it is possible that there is functional redundancy that overshadows the full extent of GbpA contributions to S. mutans biology. Glucan-associated properties such as adhesion, aggregation, and biofilm formation were examined independently of other S. mutans GBPs by cloning the gbpA gene into a heterologous host, Streptococcus gordonii, and derivatives with altered or diminished glucosyltransferase activity. The presence of GbpA did not alter dextran-dependent aggregation nor the initial sucrose-dependent adhesion of S. gordonii. However, expression of GbpA altered the biofilm formed by wild-type S. gordonii as well as the biofilm formed by strain CH107 that produced primarily alpha-1,6-linked glucan. Expression of gbpA did not alter the biofilm formed by strain DS512, which produced significantly lower quantities of parental glucan. These data are consistent with a role for GbpA in facilitating the development of biofilms that harbor taller microcolonies via binding to alpha-1,6-linkages within glucan. The magnitude of the GbpA effect appears to be dependent on the quantity and linkage of available glucan.  相似文献   

2.
Abstract Streptococcus gordonii , a member of the human indigenous oral microflora, colonizes smooth tooth surfaces and contributes to dental plaque formation. Although it is not recognized as being a cariogenic pathogen, it may cause endocarditis following invasion of the bloodstream. Using allelic exchange mutagenesis, we have constructed a mutant of S. gordonii (Challis) which is defective in its single functional glucosyltransferase gene and, hence, is unable to synthesize glucan exopolymers from sucrose. When examined in a rat endocarditis model, the sucrose-grown mutant did not differ significantly from S. gordonii wild-type, suggesting that glucan polymers did not contribute to infectivity. This result was in striking contrast to that previously observed with a polymer-defective S. mutans mutant.  相似文献   

3.
The expression of Streptococcus mutans mutant glucosyltransferase-I enzymes in S. sanguis and S. milleri suggests that cell-associated glucosyltransferase activity is dependent upon both glucan synthesis and glucan binding by the carboxyl-terminal repeating units of the enzyme. Mutant enzymes lacking these repeating units were only present in the extracellular fluids of these transformed streptococcal strains.  相似文献   

4.
Genetic exchange between oral streptococci during mixed growth   总被引:6,自引:0,他引:6  
To determine whether oral streptococci might exchange genetic information in the oral cavity, paired transformable strains of Streptococcus mutans, Streptococcus sanguis and Streptococcus milleri were growth together. Chromosomal and plasmid-borne antibiotic resistance markers could be readily transferred from S. mutans GS-5 to S. milleri NCTC 10707 or S. sanguis Challis during mixed growth. However, no exchange from the latter two organisms to strain GS-5 could be detected under these conditions. The transfer of genetic information from S. sanguis to S. milleri was also observed.  相似文献   

5.
Abstract We previously established murine hybridomas producing a monoclonal antibody monospecific against three glucosyl-transferases (I, SI and S) of Streptococcus mutans which contribute to dental caries formation. Here, we developed a new immunochemical technique (cross-dot system) with which individual levels of glucosyltransferases expressed by S. mutans can be evaluated. We also examined glucosyltransferase production and in vitro artificial plaque formation by a reference strain and several clinical isolates of S. mutans . The findings indicate that the levels of glucosyltransferases produced greatly vary with the cells and the culture medium, and that the cells producing high levels of both glucosyltransferase-SI and glucosyltransferase-I enzymes may possess high in vitro artificial plaque forming ability. We suggest that the cross-dot system will be useful for estimating the cariogenic potential of S. mutans isolates.  相似文献   

6.
While Escherichia coli expression systems have been widely utilized for the production of heterologous proteins, these systems have limitations with regard to the production of particular protein products, including poor expression, expression of insoluble proteins into inclusion bodies, and/or expression of a truncated product. Using the surface protein expression (SPEX) system, chromosomally integrated heterologous genes are expressed and secreted into media by the naturally competent gram-positive organism Streptococcus gordonii. After E. coli turned out to be an inappropriate expression system to produce sufficient quantities of intact product, we successfully utilized SPEX to produce the heterologous antigen BH4XCRR that is designed from sequences homologous to the S. pyogenes M-protein C-repeat region. To further enhance production of this product by S. gordonii, we sought to develop a novel system for the production and secretion of heterologous proteins. We observed that under various growth conditions, S. gordonii secreted high levels of a 172 kDa protein, which was identified by N-terminal sequence analysis as the glucosyltransferase GTF. Here we report on the development of a plasmid-based expression system, designated as PLEX, which we used to enhance production of BH4XCRR by S. gordonii. A region from the S. gordonii chromosome that contains the positive regulatory gene rgg, putative gtfG promoter, and gtfG secretion-signal sequence was cloned into the E. coli/Streptococcus shuttle plasmid pVA838. Additionally, the bh4xcrr structural gene was cloned into the same plasmid downstream and in-frame with rgg and gtfG. This plasmid construct was transformed into S. gordonii and BH4XCRR was detected in culture supernatants from transformants at greater concentrations than in supernatants from a SPEX strain expressing the same product. BH4XCRR was easily purified from culture supernatant using a scalable two-step purification process involving hydrophobic-interaction and gel-filtration chromatography.  相似文献   

7.
The ability to induce experimental endocarditis of biofilm-deficient mutants of Streptococcus gordonii was studied in an isogenic background. Strains were inactivated in either comD, fruK or pbp2b genes, which are involved in biofilm formation. These strains were clearly impaired (>75% reduction) in biofilm production in vitro. However, this did not result in a decreased severity of infection in vivo.  相似文献   

8.
贾平  杜先智 《微生物学通报》2009,36(3):0350-0354
为了构建结核分枝杆菌(MTb)esat6基因表达载体并在戈登链球菌GP251中进行分泌表达, 以结核杆菌H37Rv基因组DNA为模板扩增esat6基因, 将esat6基因TA克隆到pMD18-T, 构建pMD18-esat6重组载体。酶切消化pMD18-esat6, 将esat6基因亚克隆到质粒PSMB104, 生成PSMB104-esat6重组载体, 用于转化感受态戈登链球菌表达菌株GP251。用Tricine-SDS-PAGE和Western印迹检测esat6蛋白的表达, 并用ELISA技术检测该蛋白  相似文献   

9.
Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.  相似文献   

10.
Abstract Thymidine kinase is an important enzyme in the pyrimidine nucleotide salvage pathway and catalyzes the formation of thymidylate from thymidine using ATP as a phosphate donor. The gene encoding thymidine kinase of the oral bacterium Streptococcus gordonii was cloned and the nucleptide sequence determined. The inferred amino acid sequence of thymidine kinase (191 amino acids) exhibited 43% identity with type H thymidine kinase from Escherichia coli . The S. gordonii thymidine kinase expressed in Escherichia coli KY895 ( tdk ) was inhibited by thymidline triphosphate, a feature typical of type II thymidine kinases. Immediately 3' to the tdk gene, and possibly co-transcribed with it, was the gene encoding release factor 1 ( prfA ).  相似文献   

11.
Giardia lamblia (Giardia duodenalis or Giardia intestinalis) is a protozoan parasite of vertebrates with broad host specificity. Specific antibodies directed against cyst antigens can interfere with the cyst wall-building process. In this study, we engineered Streptococcus gordonii to express a 26 kDa fragment of cyst wall protein 2 (CWP2), containing a relevant B cell epitope, on the cell surface. This is the first report of S. gordonii expressing a protein of parasite origin. As S. gordonii was intended for intestinal delivery of CWP2, it was determined that this oral commensal bacterium is able to persist in the murine intestine for 30 days. Immunization with recombinant streptococci expressing the 26 kDa fragment resulted in higher antibody levels. Specific anti-CWP2 IgA antibodies were detected in fecal samples and anti-CWP2 IgG antibodies were detected in serum demonstrating the efficacy of S. gordonii for intragastric antigen delivery. In a pilot challenge experiment, immunized mice demonstrated a significant 70% reduction in cyst output.  相似文献   

12.
Platelet aggregation by oral streptococci   总被引:2,自引:0,他引:2  
One proposed mechanism in the pathogenesis of infective endocarditis is the direct aggregation of platelets by the bacteria causing the disease. Some, but not all, strains of Streptococcus sanguis have been reported to aggregate platelets but the taxonomy of this and related taxa has changed recently. The ability to aggregate platelets by 24 genetically grouped laboratory stock strains was studied along with 8 recent isolates from cases of endocarditis. Strains belonging to S. sanguis could aggregate platelets, but not S. gordonii, "S. parasanguis", S. mitis, S. oralis or related taxa. Also, preliminary data indicate that certain biotypes of S. sanguis lack the ability to aggregate platelets. Of the recent clinical isolates, only 4 aggregated platelets and each of these showed phenotypes typical of S. sanguis. These data suggest that the ability to aggregate platelets is not essential for an organism to be able to cause endocarditis, although it may be a significant virulence factor.  相似文献   

13.
The abscess forming abilities of "Streptococcus milleri" strains (Streptococcus constellatus, Streptococcus anginiosus, and Streptococcus intermedius) isolated from dentoalveolar abscesses and the synergistic effect of Fusobacterium nucleatum co-inoculated with the isolates were examined on a mouse subcutaneous abscess model. Five days after inoculation, all S. milleri strains formed abscesses, which showed less pathological spread to surrounding connective tissues than those formed by Staphylococcus aureus 209P strain and were similar to those by F. nucleatum ATCC25586. When each S. milleri strain and F. nucleatum were co-inoculated, abscess sizes and each bacterial number recovered from abscesses increased in comparison to those treated by bacterial mono-inoculation of each S. milleri strain or F. nucleatum alone. The strongest synergistic effect was observed in the combination of S. constellatus and F. nucleatum. In a time course experiment with this combination, the recovery of S. constellatus subsequently decreased after the decrement of F. nucleatum, and it appeared that the association with F. nucleatum maintained the bacterial number of S. constellatus in the abscess. The cell-free supernatant of F. nucleatum had a tendency to increase the abscess size caused by S. constellatus in this model. When S. constellatus was cultured with F. nucleatum culture supernatant in vitro, growth enhancement in the early phase was observed. Furthermore, the phagocytic killing of S. constellatus by human polymorphonuclear leukocytes (PMNs) was significantly suppressed and the PMN membranes appeared to be injured by addition of the F. nucleatum culture supernatant. These results suggest that the pathogenicity of S. milleri strains in odontogenic infections may be enhanced by the co-existence of F. nucleatum.  相似文献   

14.
Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho- N -acetylglucosamine. We have recently identified the gene ( glmM ) encoding the enzyme of Streptococcus gordonii , an early colonizer on the human tooth and an important cause of infective endocarditis, and indicated that the glmM mutation in S. gordonii appears to influence bacterial cell growth, morphology, and sensitivity to penicillins. In the present study, we assessed whether the glmM mutation also affects escape from polymorphonuclear leukocyte (PMN)-dependent killing. Although no differences in attachment to human PMNs were observed between the glmM mutant and the wild-type S. gordonii , the glmM mutation resulted in increased sensitivity to PMN-dependent killing. Compared with the wild type, the glmM mutant induced increased superoxide anion production and lysozyme release by PMNs. Moreover, the glmM mutant is more sensitive to lysozyme, indicating that the GlmM may be required for synthesis of firm peptidoglycans for resistance to bacterial cell lysis. These findings suggest that the GlmM contributes to the resistance of S. gordonii to PMN-dependent killing. Enzymes such as GlmM could be novel drug targets for this organism.  相似文献   

15.
Abstract Oral Streptococcus species experience carbohydrate limitation interrupted by periods of substrate excess following food intake by the host. To investigate the competitiveness of various streptococcal species under fluctuating carbohydrate supply, 2-membered chemostat cultures were run.
Under continuous limitation of glucose or sucrose, all 6 Streptococcus mutans test strains were outcompeted by Streptococcus sanguis P4A7 or Streptococcus milleri B448. This indicated that S. mutans had a lower affinity for glucose and sucrose than S. sanguis and S. milleri .
Mixed cultures were then subjected to hourly pulses with glucose. Under these conditions S. mutans Ny344 competed successfully with S. milleri B448, but still lost the competition against S. sanguis P4A7. The streptococci responded to pulses by taking up glucose at the maximum rate almost instantaneously. S. sanguis P4A7 had the highest rate of glucose uptake while the q max value of S. mutans Ny344 was higher than that of S. milleri B448. This suggested a causal relationship between q max and competitiveness.  相似文献   

16.
贾平  杜先智 《微生物学报》2008,35(6):0944-0948
戈登氏链球菌是一种非致病性革兰氏阳性黏膜共生菌, 参与组成人类口腔正常菌群。它具有特殊的生物学特性, 非常适合作为黏膜疫苗的载体。了解戈登氏链球菌的生物学特性, 常用表达体系及该菌在黏膜疫苗的应用情况, 将为其黏膜疫苗的进一步研制提供重要参考。  相似文献   

17.
贾平  杜先智 《微生物学通报》2008,35(6):0944-0948
戈登氏链球菌是一种非致病性革兰氏阳性黏膜共生菌,参与组成人类口腔正常菌群.它具有特殊的生物学特性,非常适合作为黏膜疫苗的载体.了解戈登氏链球菌的生物学特性,常用表达体系及该菌在黏膜疫苗的应用情况,将为其黏膜疫苗的进一步研制提供重要参考.  相似文献   

18.
The C-terminal coding region of the gene (denoted cshA) encoding a high-molecular-mass (290 kDa) cell-surface polypeptide in the oral bacterium Streptococcus gordonii was cloned and sequenced. Insertion of ermAM into the S. gordonii chromosome at the 3' end of the coding region of cshA led to the production of isogenic mutants that secreted a truncated form (260 kDa) of the CshA polypeptide into the growth medium. Mutants had reduced cell-surface hydrophobicity and were impaired in their ability to coaggregate with oral actinomyces. The results identify a carboxyl terminus-anchored cell-surface protein determinant of hydrophobicity and coaggregation in S. gordonii.  相似文献   

19.
Candida albicans surfaces are extremely sensitive to changes in growth conditions. In this study, adhesion to glass of aerated and non-aerated C. albicans ATCC 10261 in the presence and absence of adhering Streptococcus gordonii NCTC 7869 was determined in a parallel plate flow chamber. In addition, the influence of aeration on the yeast cell surface hydrophobicity, surface charge, and elemental cell surface composition was measured. S. gordonii adhering at the glass surface caused a reduction in the initial deposition rate of C. albicans, regardless of aeration. In a stationary end-point, only adhesion of non-aerated C. albicans was suppressed by the adhering S. gordonii. Non-aerated yeasts had a higher O/C elemental surface concentration ratio, indicative of cell surface polysaccharides, than aerated yeasts, at the expense of nitrogen-rich cell surface proteins. Both yeasts were essentially uncharged, but the nitrogen-rich cell surface of aerated yeasts had a slightly higher water contact angle than non-aerated yeasts. Summarizing, this study suggests that highly localized, hydrophobic cell surface proteins on C. albicans are a prerequisite for their interaction with adhering streptococci.  相似文献   

20.
Analysis of a primer-independent GTF-I from Streptococcus salivarius   总被引:1,自引:0,他引:1  
Abstract A glucosyltransferase (GTF) gene, designated gtfL , from Streptococcus salivarius was cloned and expressed in Escherichia coli and its nucleotide sequence determined. The GTF-L enzyme catalysed the synthesis of water-insoluble glucan in a primer-independent manner. The nucleotide sequence and derived amino acid sequence of GTF-L were similar in size and domain structure to previously sequenced glucosyltransferases. However, a 464-bp region of high variability was identified which could be selectively amplified from strains of S. salivarius by the polymerase chain reaction and could therefore form the basis for species identification. No sequence-specific motifs related to the solubility and linkage of the glucan product or its need for a dextran primer could be ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号