首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 1419, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.  相似文献   

2.
Calpain-mediated proteolysis has been implicated as a major process in neuronal cell death including retinal neurological degeneration. The previously reported calpain inhibitor SJA6017 (1) showed oral efficacy in a retinal pharmacological model, but its oral bioavailability was low due to the metabolic lability and low water-solubility. The purpose of present study was to identify good orally bioavailable calpain inhibitors. A series of water-soluble dipeptidyl alpha-ketoamides containing a pyridine moiety at P3 were designed, synthesized, and evaluated for their oral bioavailability and retinal penetration. Introduction of a pyridineethanol moiety provided the potent alpha-ketoamide inhibitor 8 with good oral bioavailability. Compound 8 showed about 12-fold higher retinal AUC than 1.  相似文献   

3.
A series of 1,2,3,6-tetrahydropyridyl-4-carboxamides, exemplified by 6, have been synthesized and evaluated for in vitro TRPV1 antagonist activity, and in vivo analgesic activity in animal pain models. The tetrahydropyridine 6 is a novel TRPV1 receptor antagonist that potently inhibits receptor-mediated Ca2+ influx in vitro induced by several agonists, including capsaicin, N-arachidonoyldopamine (NADA), and low pH. This compound penetrates the CNS and shows potent anti-nociceptive effects in a broad range of animal pain models upon oral dosing due in part to its ability to antagonize both central and peripheral TRPV1 receptors. The SAR leading to the discovery of 6 is presented in this report.  相似文献   

4.
The synthesis and structure–activity relationships of a series of 5-monosubstituted and 4,5-disubstituted 2-arylaminooxazoles as novel antagonists of the transient receptor potential vanilloid 1 (TRPV1) receptor are described. The 7-hydroxy group of the tetrahydronaphthyl moiety on the 2-amino substituent of the oxazole ring was important for obtaining excellent in vitro potency at the human TRPV1 receptor, while a variety of alkyl and phenyl substituents at the 4- and 5-positions of the oxazole ring were well tolerated and yielded potent TRPV1 antagonists. Despite excellent in vitro potency, the 5-monosubstituted compounds suffered from poor pharmacokinetics. It was found that 4,5-disubstitution on the oxazole ring was critical to the improvement of the overall pharmacokinetic profile of these analogues, which led to the discovery of compound (R)-27, a novel TRPV1 antagonist with good oral activity in preclinical animal models of pain.  相似文献   

5.
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.  相似文献   

6.
A series of 2-(3,5-substituted 4-aminophenyl)acetamide and propanamide derivatives were investigated as human TRPV1 antagonists. The analysis of the structure-activity relationship indicated that 2-(3,5-dihalo 4-aminophenyl)acetamide analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed improved potency compared to the corresponding propanamides. The most potent antagonist (36) exhibited potent and selective antagonism for hTRPV1 not only to capsaicin but also to NADA and elevated temperature; however, it only displayed weak antagonism to low pH. Further studies indicated that oral administration of antagonist 36 blocked the hypothermic effect of capsaicin in vivo but demonstrated hyperthermia at that dose. A docking study of 36 was performed in our established hTRPV1 homology model to understand its binding interactions with the receptor and to compare with that of previous antagonist 1.  相似文献   

7.
The SAR of capsazepine revealed that tetrahydroisoquinoline (TIQ) moiety is a core pharmacophore of TRPV1 activity. This implied that conjugates of endogenous TIQs with fatty acids would be active at TRPV1 receptors. Six such compounds were synthesized and tested for calcium mobilization at recombinant TRPV1 receptors overexpressed in HEK293 cells. Three compounds showed partial TRPV1 agonism with EC(50) values in the low micromolar range and maximal efficacies between 25% and 55% of capsaicin.  相似文献   

8.
Entacapone has a relatively low oral bioavailability which may, in part, be due to its low aqueous solubility at low pH and/or its hydrophilic character at neutral pH. Various novel N-alkyl and N,N-dialkyl carbamate esters of entacapone were synthesized as possible prodrugs of entacapone in order to increase its aqueous solubility at an acidic pH and to increase its lipophilicity at neutral pH. Oral bioavailability of entacapone and selected carbamate esters were investigated in rats. Both N-alkyl and N,N-dialkyl carbamate esters were relatively stable against chemical hydrolysis at pH 7.4 (t1/2 = 14.9-20.7 h), but hydrolyzed rapidly (t1/2 = 0.8-2.7 h) in human serum. However, in contrast to N-alkyl carbamates, N,N-dialkyl carbamates did not release entacapone in in vitro enzymatic hydrolysis (human serum) studies. N-Alkyl carbamates, 2a-c, showed increased aqueous solubility at pH 7.4, of which 2a and 2c also show increased aqueous solubility at pH 5.0, compared to entacapone. In addition to increased aqueous solubility, 2c showed increased lipophilicity at pH 7.4. However, two N-alkyl carbamates of entacapone did not increase the oral bioavailability of the parent drug in rats. Thus, it can be concluded that the relatively low lipophilicity of entacapone is not the cause of its low bioavailability.  相似文献   

9.
Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.  相似文献   

10.

Background

There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment.

Methodology/Principal Findings

Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1∼5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca2+]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses.

Conclusions/Significance

Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.  相似文献   

11.
12.
The vanilloid receptor TRPV1 plays a well-established functional role in the detection of a range of chemical and thermal noxious stimuli, such as those associated with tissue inflammation and the resulting pain. TRPV1 activation results in membrane depolarization, but may also trigger intracellular Ca2+ -signalling events. In a proteomic screen for proteins associated with the C-terminal sequence of TRPV1, we identified beta-tubulin as a specific TRPV1-interacting protein. We demonstrate that the TRPV1 C-terminal tail is capable of binding tubulin dimers, as well as of binding polymerized microtubules. The interaction is Ca2+ -sensitive, and affects microtubule properties, such as microtubule sensitivity towards low temperatures and nocodazole. Our data thus provide compelling evidence for the interaction of TRPV1 with the cytoskeleton. The Ca2+ -sensitivity of this interaction suggests that the microtubule cytoskeleton at the cell membrane may be a downstream effector of TRPV1 activation.  相似文献   

13.
Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals.  相似文献   

14.
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.  相似文献   

15.
In general, drugs containing amidines suffer from poor oral bioavailability and are often converted into amidoxime prodrugs to overcome low uptake from the gastrointestinal tract. The esterification of amidoximes with amino acids represents a newly developed double prodrug principle creating derivatives of amidines with both improved oral availability and water solubility. N-valoxybenzamidine (1) is a model compound for this principle, which has been transferred to the antiprotozoic drug pentamidine (8). Prodrug activation depends on esterases and mARC and is thus independent from activation by P450 enzymes. Therefore, drug-drug interactions or side effects will be minimized. The synthesis of these two compounds was established, and their biotransformation was studied in vitro and in vivo. Bioactivation of N-valoxybenzamidine (1) and N,N'-bis(valoxy)pentamidine (7) via hydrolysis and reduction has been demonstrated in vitro with porcine and human subcellular enzyme preparations and the mitochondrial Amidoxime Reducing Component (mARC). Moreover, activation of N-valoxybenzamidine (1) by porcine hepatocytes was studied. In vivo, the bioavailability in rats after oral application of N-valoxybenzamidine (1) was about 88%. Similarly, N,N'-bis(valoxy)pentamidine (7) showed oral bioavailability. Analysis of tissue samples revealed high concentrations of pentamidine (8) in liver and kidney.  相似文献   

16.
The vanilloid receptor 1 (VR1 or TRPV1) ion channel is activated by noxious heat, low pH and by a variety of vanilloid-related compounds. The antagonist, capsazepine is more effective at inhibiting the human TRPV1 response to pH 5.5 than the rat TRPV1 response to this stimulus. Mutation of rat TRPV1 at three positions in the S3 to S4 region, to the corresponding human amino acid residues I514M, V518L, and M547L decreased the IC(50) values for capsazepine inhibition of the pH 5.5 response from >10,000 nm to 924 +/- 241 nm in [Ca(2+)](i) assays and increased capsazepine inhibition of the capsaicin response to levels seen for human TRPV1. We have previously noted that phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) is a strong agonist of rat TRPV1 but not human TRPV1 in [Ca(2+)](i) assays (1). Mutation of methionine 547 in S4 of rat TRPV1 to leucine, found in human TRPV1 (M547L), reduced the ability of PPAHV to activate TRPV1 by approximately 20-fold. The reciprocal mutation of human TRPV1 (L547M) enabled the human receptor to respond to PPAHV. These mutations did not significantly affect the agonist activity of capsaicin, resiniferatoxin (RTX) or olvanil in [Ca(2+)](i) assays. Introducing the equivalent mutation into guinea pig TRPV1 (L549M) increased the agonist potency of PPAHV by > 10-fold in the [Ca(2+)](i) assay and increased the amplitude of the evoked current. The rat M547L mutation reduced the affinity of RTX binding. Thus, amino acids within the S2-S4 region are important sites of agonist and antagonist interaction with TRPV1.  相似文献   

17.
We have developed a series of potent and selective factor VIIa inhibitors based on the 2-[5-(5-carbamimidoyl-1H-benzoimidazol-2-yl)-6-hydroxy-biphenyl-3-yl]-succinic acid scaffold. These amidine-containing compounds have low oral bioavailability. Herein, we describe our efforts to improve the oral bioavailability of the parent amidine via a prodrug strategy where the amidine basicity and polarity were reduced with either an alkoxy-amidine or a carbamate prodrug.  相似文献   

18.
Immunohistochemistry for several neurochemical substances, the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2), P2X3 receptor, and parvalbumin (PV), was performed on the nodose ganglion, pharynx, and epiglottis in human cadavers. The nodose ganglion was situated beneath the jugular foramen, and had a spindle shape with the long rostrocaudal axis. The pharyngeal branch (PB) issued from a rostral quarter of the nodose ganglion, whereas the superior laryngeal nerve (SLN) usually originated from a caudal half of the ganglion. In the nodose ganglion, sensory neurons were mostly immunoreactive for TRPV1 (89 %) or P2X3 (93.9 %). About 30 % of nodose neurons contained TRPV2 (35.7 %)—or PV (29.9 %)—immunoreactivity (-IR). These neurons mainly had small to medium-sized cell bodies, and were distributed throughout the ganglion. Neurodegenerative profiles such as shrinkage or pyknosis could not be detected in the examined ganglion. Occasionally, TRPV2-IR nerve fibers surrounded blood vessels in the epiglottis as well as in the nasal and oral parts of the pharynx. Isolated TRPV2-IR nerve fibers were also located beneath the epithelium. TRPV1-, P2X3-, or PV-IR nerve endings could not be detected in the pharynx or epiglottis. In the PB and SLN, however, numerous nerve fibers contained TRPV1-, TRPV2-, P2X3-, and PV-IR. The present study suggests that TRPV1-, TRPV2-, P2X3-, and PV-IR neurons in the human nodose ganglion innervate the pharynx and epiglottis through the PB and SLN. These neurons may respond to chemical, thermal, and mechanical stimuli during respiration and swallowing.  相似文献   

19.
The transient receptor potential (TRP) superfamily contains a large number of proteins encoding cation permeable channels that are further divided into TRPC (canonical), TRPM (melastatin), and TRPV (vanilloid) subfamilies. Among the six TRPV members, TRPV1, TRPV2, TRPV3, and TRPV4 form heat-activated cation channels, which serve diverse functions ranging from nociception to osmolality regulation. Although chemical activators for TRPV1 and TRPV4 are well documented, those for TRPV2 and TRPV3 are lacking. Here we show that in the absence of other stimuli, 2-aminoethoxydiphenyl borate (2APB) activates TRPV1, TRPV2, and TRPV3, but not TRPV4, TRPV5, and TRPV6 expressed in HEK293 cells. In contrast, 2APB inhibits the activity of TRPC6 and TRPM8 evoked by 1-oleolyl-2-acetyl-sn-glycerol and menthol, respectively. In addition, low levels of 2APB strongly potentiate the effect of capsaicin, protons, and heat on TRPV1 as well as that of heat on TRPV3 expressed in Xenopus oocytes. In dorsal root ganglia neurons, supra-additive stimulations were evoked by 2APB and capsaicin or 2APB and acid. Our data suggest the existence of a common activation mechanism for TRPV1, TRPV2, and TRPV3 that may serve as a therapeutic target for pain management and treatment for diseases caused by hypersensitivity and temperature misregulation.  相似文献   

20.
《Cell calcium》2014,55(4):208-218
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca2+ concentration ([Ca2+]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca2+, the hypotonic test solution evoked Ca2+ influx. The [Ca2+]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca2+]i only in the presence of extracellular Ca2+. The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号