首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of [14C]arginine and [14C]ornithine into various polyamines was studied in mung bean (Vigna radiata [L.] Wilczek) hypocotyl cuttings with respect to the effect of indole-3-butyric acid on adventitious root formation.

Both [14C]arginine and [14C]ornithine are rapidly incorporated into putrescine, spermidine, and spermine, with similar kinetics, during 5- to 24-hour incubation periods. The incorporation of arginine into putrescine is generally higher than that of ornithine. The biosynthesis of putrescine and spermidine from the precursors, in the hypocotyls, is closely related to the pattern of root formation: a first peak at 0 to 24 hours corresponding to the period of root primordia development, and a second peak of putrescine biosynthesis at 48 to 72 hours corresponding to root growth and elongation. Indole-3-butyric acid considerably enhances putrescine biosynthesis in both phases, resulting in an increase of the putrescine/spermidine ratio.

It is concluded that the promotive effect of indole-3-butyric acid on putrescine biosynthesis, from both arginine and ornithine, supports the hypothesis that auxin-induced root formation may require the promotion of polyamine biosynthesis.

  相似文献   

2.
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.  相似文献   

3.
The effects of the inhibitors of polyamine biosynthesis, canavanineand -methyl ornithine on growth, the activities of argininedecarboxylase (EC 4.1.1.19 [EC] ) and ornithine decarboxylase (EC4.1.1.17 [EC] ) and on polyamine content were examined in two differentgrowth regions of Phaseolus vulgaris L. cv. Taylor's Horticulturalroots. Separately, in the same manner, in the same bean rootsystem exogenous putrescine effect and the interaction of canavaninewith putrescine were determined. The arginine and ornithine decarboxylase activities found inroot apex were high where cell division activity was highest.Polyamine (putrescine and spermine) content did not correlatewith these activities, but polyamine level was high in the rootbase where cell elongation is the main process. The arginineanalogue, canavanine, inhibited arginine decayboxylase activityand polymine liters. Putrescine partially reversed the canavanineinhibition of root growth as well as arginine decarboxylaseactivity and polyamine content. Similarly -methyl ornithineslightly inhibited the root length and ornithine decarboxylaseactivity in the root apex. Besides, exogenous putrescine didnot effect significantly the endogenous polyamine titers. Theseresults reinforce the growing connection between polyaminesand the rates of cell devision in the roots of bean plants.Separately, arginine decarboxylase is the main enzyme in thebean roots. (Received November 10, 1986; Accepted March 3, 1987)  相似文献   

4.
 Jasmonic acid (JA) and its methyl ester (MeJA) at concentrations ranging from 0.001 to 10 μM provoked large increases in methylputrescine levels in normal and hairy roots of Hyoscyamus muticus L.; generally, levels of free putrescine and perchloric acid-soluble conjugated putrescine, spermidine and spermine also increased dramatically. More 14C-putrescine was formed when hairy roots were incubated with labelled ornithine than with arginine; conjugated 14C-putrescine was also rapidly formed. In accord with these results, ornithine decarboxylase (EC 4.1.1.17) activity was higher than that of arginine decarboxylase (EC 4.1.1.19), and MeJA enhanced these activities about two- and fourfold, respectively. Although treatment of root cultures with jasmonates enhanced precursor (putrescine, methylputrescine) levels and accumulation of secondary metabolites such as acid-soluble conjugated di-/polyamines, it provoked only modest increases in tropane alkaloid tissue levels. Received: 24 March 1999 / Revision received: 5 October 1999 / Accepted: 26 October 1999  相似文献   

5.
In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to 14C-labeled CO2 for 44 hours, the incorporation of 14C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with α-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on 14C incorporation into the necines. In contrast, α-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of 14C into the necines of both species; the inhibitor did not affect the absolute incorporation of 14C from exogenous [1,4-14C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-14C]arginine, but also exogenous l-[5-14C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of 14C-labeled CO2 assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed.  相似文献   

6.
The feasibility of d,l-[5-14C]ornithine ([14C]ornithine), a precursor for polyamine synthesis, and d,l-2-difluoromethyl[5-14C]ornithine ([14C]DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) were investigated for tumor localization. As an animal model, mice bearing mammary carcinoma, FM3A, were used. After i.v. injection of [14C]ornithine accumulation of radioactivity was observed in the FM3A, in which 43% of the 14C radioactivity was measured in the polyamine pool and 41% in the amino acid pool at 60 min after injection. Tumor uptake of [14C]DFMO was relatively low but constant during 60 min after injection. At 60 min after injection, 11% of the 14C was present in the acid-precipitable fraction of the FM3A, which suggests the formation of an irreversible complex of [14C]DFMO with ODC. For both compounds rapid blood clearance and high tumor-to-organ ratios were observed. Our results indicate that in connection with an enhanced polyamine synthesis in the tumors, the compounds investigated have potential as tracers for tumor detection.  相似文献   

7.
Isotope feeding and inhibitor experiments were performed in order to elucidate the pathway common to polyamine and alkaloid biosynthesis in root cultures of Senecio vulgaris L. -Difluoromethylarginine, a specific inhibitor of arginine decarboxylase, prevented completely the incorporation of radioactivity from [14C]arginine and [14C]ornithine into spermidine and the pyrrolizidine alkaloid senecionine N-oxide. In contrast, -difluoromethylornithine, a specific ornithine-decarboxylase inhibitor, had no effect on the flow of radioactivity from labelled ornithine and arginine into polyamines and alkaloids. Thus, putrescine, the common precursor of polyamines and pyrrolizidine alkaloids, is exclusively derived via the arginine-agmatine route. Ornithine is rapidly transformed into arginine. Recycling of the guanido moiety of agmatine back to ornithine can be excluded. Putrescine and spermidine were found to be reversibly interconvertable and to excist in a highly dynamic state. In contrast, senecionine N-oxide did not show any turnover but accumulated as a stable metabolic product. In-vivo evidence is presented that the carbon flow from arginine into the polyamine/alkaloid pathway may be controlled by spermidine. The possible importance of the metabolic coupling of pyrrolizidine-alkaloid biosynthesis to polyamine metabolism is discussed.Abbreviations DFMA D,l--difluoromethylarginine - DFMO D,l--difluoromethylornithine - FW fresh weight  相似文献   

8.
Polyamines in Rice Seedlings under Oxygen-Deficit Stress   总被引:2,自引:1,他引:1       下载免费PDF全文
Incubation of 3-d-old seedlings of Oryza sativa L. cv Arborio under anaerobic conditions, leads to a large increase in the titer of free putrescine while aerobic incubation causes a slight decrease. After 2 days, the putrescine level is about 2.5 times greater without oxygen than in air. The rice coleoptile also accumulates a large amount of bound putrescine and, to a lesser extent, spermidine and spermine (mainly as acid-soluble conjugates). Accumulation of conjugates in the roots is severely inhibited by the anaerobic treatment. Feeding experiments with labeled amino acids showed that anoxia stimulates the release of 14CO2 from tissues fed with [14C]arginine and that arginine is the precursor in putrescine biosynthesis. After 2 d of anoxia, the activity of arginine decarboxylase was 42% and 89% greater in coleoptile and root, respectively, than in the aerobic condition. The causes of the differences in polyamine metabolism in anoxic coleoptiles and roots are discussed.  相似文献   

9.
Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells.  相似文献   

10.
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997  相似文献   

11.
Metabolic sequestration of putrescine in Neurospora crassa   总被引:3,自引:0,他引:3  
The metabolic fate of putrescine labelled invivo was investigated after administration of a trace (10?7 M) of L-[14C]ornithine to exponentially growing mycelia of Neurosporacrassa, followed by a large chase (2 mM) of L-[12C]ornithine. The specific radioactivities of putrescine and spermidine were determined during the chase period by reaction with [3H]dansyl chloride of known specific radioactivity and isolation of the dansyl-derivatives by thin-layer chromatography. Radioactivity remained in the putrescine pool for over 2 h during the chase period. This suggests that putrescine is largely sequestered (80% or more) invivo. The metabolic sequestration of polyamines may be a significant factor in the regulation of polyamine synthesis.  相似文献   

12.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

13.
This study was conducted to determine a role for cortisol in regulating intestinal ornithine decarboxylase (ODC) activity and to identify the metabolic sources of ornithine for intestinal polyamine synthesis in suckling pigs. Thirty-two 21-day-old suckling pigs were randomly assigned to one of four groups with eight animals each and received daily intramuscular injections of vehicle solution (sesame oil; control), hydrocortisone 21-acetate (HYD; 25 mg/kg body wt), RU-486 (10 mg/kg body wt, a potent blocker of glucocorticoid receptors), or HYD plus RU-486 for two consecutive days. At 29 days of age, pigs were killed for preparation of jejunal enterocytes. The cytosolic fraction was prepared for determining ODC activity. For metabolic studies, enterocytes were incubated for 45 min at 37 degrees C in 2 ml of Krebs-bicarbonate buffer (pH 7.4) containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Cortisol administration increased intestinal ODC activity by 230%, polyamine (putrescine, spermidine, and spermine) synthesis from ornithine and proline by 75-180%, and intracellular polyamine concentrations by 45-83%. Polyamine synthesis from arginine was not detected in enterocytes of control pigs but was induced in cells of cortisol-treated pigs. There was no detectable synthesis of polyamines from glutamine in enterocytes of all groups of pigs. The stimulating effects of cortisol on intestinal ODC activity and polyamine synthesis were abolished by coadministration of RU-486. Our data indicate that an increase in plasma cortisol concentrations stimulates intestinal polyamine synthesis via a glucocorticoid receptor-mediated mechanism and that proline (an abundant amino acid in milk) is a major source of ornithine for intestinal polyamine synthesis in suckling neonates.  相似文献   

14.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

15.
The biosynthesis of the newly isolated polyamine, sym-homospermidine (NH(2)-[CH(2)](4)-NH-[CH(2)](4) -NH(2)), was studied by using radioactive amino acids. Arginine was the most effective precursor, being about 10 times as active as ornithine. Unlabelled agmatine and putrescine markedly inhibited the incorporation of [(14)C]arginine into homospermidine. Similarly the incorporation of ornithine was inhibited by unlabelled arginine and putrescine. gamma-Aminobutyraldehyde, the oxidation product of putrescine, was considered to be one of the intermediates in the biosynthesis of homospermidine. The biosynthesis may involve a Schiff-base formation of putrescine with gamma-aminobutyraldehyde and subsequent reduction. A limited synthesis of spermidine also takes place under these conditions.  相似文献   

16.
The ornithine urea cycle, polyamine synthesis, nitric oxide synthesis and metabolism of arginine to putrescine have been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Neither parasite had a detectable arginine deiminase/dihydrolase pathway nor a functional ornithine urea cycle. Nitric oxide synthase was present in central and peripheral nerves, but was not detected in whole parasite homogenates. Both arginase (E.C. 3.5.3.1) and agmatinase (E.C. 3.5.3.11) activities were present in both species. Arginase did not require added Mn2+ and had an optimal pH of 8.5. Polyamine metabolism differed in the two species and from that in mammals. Ornithine decarboxylase (E.C. 4.1.1.17) was present in both parasites, but no arginine decarboxylase (E.C. 4.1.1.19) activity was detected in T. circumcincta. The flexibility of synthesis of putrescine in H. contortus may make this pathway less useful as a target for parasite control than in T. circumcincta, in which only the ornithine decarboxylase pathway was detected.  相似文献   

17.
SYNOPSIS. The sensitive dansyl procedure was used to detect putrescine and spermidine, but not spermine and cadaverine, in pleomorphic Trypanosoma brucei. The polyamines were synthesized in vitro from [3H]ornithine, [14C]arginine and [14C]methionine. Proline, agmatine, and citrulline, but not glutamine, glutamic or pyroglutamic acids, stimulated spermidine formation from [14C]methionine. Putrescine and spermidine synthesis occurred rapidly from ornithine: putrescine synthesis peaked in 0.5 h, spermidine in 1 h. Trypanosoma brucei assimilated exogenous 14C-labeled putrescine, spermidine, and spermine; spermidine and spermine were taken up 5 times as rapidly as putrescine. Polyamine syntheses may therefore be a practical target for novel trypanocies.  相似文献   

18.
We have investigated the arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17) activities and the levels of conjugated polyamines to explain the decrease of free putrescine level caused by citrus exocortis viroid (CEVd) and ethephon treatment in tomato (Lycopersicon esculentum Mill. cv Rutgers) plants (J.M. Belles, J. Carbonell, V. Conejero [1991] Plant Physiol 96: 1053-1059). This decrease correlates with a decrease in ODC activity in CEVd-infected or ethephon-treated plants; ADC activity was not altered. CEVd infection had no effect on polyamine conjugates, and ethephon produced a decrease in putrescine conjugates. Interference with ethylene action by silver ions prevented the decrease in ODC activity and in free and conjugated putrescine. It is suggested that changes in putrescine level after CEVd infection and ethephon treatment are regulated via ODC activity and that conjugation is not involved.  相似文献   

19.
This study was conducted to determine whether a cortisol surge mediates the enhanced expression of intestinal ornithine decarboxylase (ODC) in weanling pigs. Piglets were nursed by sows until 21 days of age, when 40 pigs were randomly assigned into one of four groups (10 animals/group). Group 1 continued to be fed by sows, whereas groups 2-4 were weaned to a corn and soybean meal-based diet. Weanling pigs received intramuscular injections of vehicle solvent (sesame oil), RU-486 (a potent blocker of glucocorticoid receptors; 10 mg/kg body wt), and metyrapone (an inhibitor of adrenal cortisol synthesis; 5 mg/kg body wt), respectively, 5 min before weaning and 24 and 72 h later. At 29 days of age, pigs were used to prepare jejunal enterocytes for ODC assay and metabolic studies. To determine polyamine (putrescine, spermidine, and spermine) synthesis, enterocytes were incubated for 45 min at 37 degrees C in 2 ml Krebs-bicarbonate buffer containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Weaning increased intestinal ODC activity by 230% and polyamine synthesis from ornithine, arginine, and proline by 72-157%. Arginine was a quantitatively more important substrate than proline for intestinal polyamine synthesis in weaned pigs. Administration of RU-486 or metyrapone to weanling pigs prevented the increases in intestinal ODC activity and polyamine synthesis, reduced intracellular polyamine concentrations, and decreased villus heights and intestinal growth. Our results demonstrate an essential role for a cortisol surge in enhancing intestinal polyamine synthesis during weaning, which may be of physiological importance for intestinal adaptation and remodeling.  相似文献   

20.
Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-14C]putrescine and [1,4-14C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号