首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 1.9-kb cDNA clone to chick lumican (keratan sulfate proteoglycan) was isolated by screening an expressing vector library made from chick corneal RNA with antiserum to chick corneal lumican. The cDNA clone contained an open reading frame coding for a 343-amino acid protein, Mr = 38,640. Structural features of the deduced sequence include: a 18-amino acid signal peptide, cysteine residues at the N- and C-terminal regions, and a central leucine-rich region (comprising 62% of the protein) containing nine repeats of the sequence LXXLXLXXNXL/I, where X represents any amino acid. Lumican contains three variations of this sequence that are tandemly linked to form a unit and three units tandemly linked to form the leucine-rich region. The sequential arrangement of these repeats and their spacing suggest that this region arose by duplication. The deduced sequence shows five potential N-linked glycosylation sites, four of which are in the leucine-rich region. These sites are also potential keratan sulfate attachment sites. The cDNA clone to lumican hybridizes to a 2.0-kb mRNA found in tissues other than cornea, predominantly muscle and intestine. Radiolabeling and immunoprecipitation studies show that lumican core protein is also synthesized by these tissues. The primary structure of lumican is similar to fibromodulin, decorin, and biglycan, which indicates it belongs to the small interstitial proteoglycan gene family. The expression of lumican in tissues other than cornea indicates a broader role for lumican besides contributing to corneal transparency.  相似文献   

2.
Posttranslational glycosaminoglycan attachment to decorin, a chondroitin/dermatan sulfate proteoglycan, was studied by expression of a wild-type decorin cDNA and several mutagenized forms in two types of mammalian cells. Transfection of the wild-type cDNA resulted in the synthesis of an authentic chondroitin/dermatan sulfate proteoglycan similar to the decorin molecule synthesized by cultured human fibroblasts. Conversion of the serine residue that serves as the attachment site for the sole glycosaminoglycan chain in decorin to a threonine residue greatly reduced the efficiency of the glycosaminoglycan substitution. Less than 10% of the threonine-mutated core protein acquired a glycosaminoglycan chain, whereas most of the core protein was secreted without such substitution. Expression of cDNA in which an alanine residue had been introduced into the substituted serine position resulted in the secretion of core protein with no detectable glycosaminoglycan. Conversion to alanine of either one of the glycine residues that are adjacent to the substituted serine yielded the proteoglycan form of decorin. These results show that the xylosyltransferase responsible for the initiation of the glycosaminoglycan chain on the core protein can use a threonine residue for this substitution instead of a serine residue, but that such substitution is only partial, creating a "part-time" proteoglycan. Moreover, variations are possible in the sequence context of a glycosaminoglycan-substituted serine residue without loss of glycosaminoglycan substitution. The conformation of the substitution site may therefore be important for xylosyltransferase recognition.  相似文献   

3.
We have determined the sequence of a partial cDNA clone encoding the C-terminal region of bovine cartilage aggregating proteoglycan core protein. The deduced amino acid sequence contains a cysteine-rich region which is homologous with chicken hepatic lectin. This lectin-homologous region has previously been identified in rat and chicken cartilage proteoglycan. The bovine sequence presented here is highly homologous with the rat and chicken amino acid sequences in this apparently globular region. A region containing clusters of Ser-Gly sequences is located N-terminal to the lectin homology domain. These Ser-Gly-rich segments are arranged in tandemly repeated, approx. 100-residue-long, homology domains. Each homology domain consists of an approx. 75-residue-long Ser-Gly-rich region separated by an approx. 25-residue-long segment lacking Ser-Gly dipeptides. These dipeptides are arranged in 10-residue-long segments in the 100-residue-long homology domains. The shorter homologous segments are tandemly repeated some six times in each 100-residue-long homology domain. Serine residues in these repeats are potential attachment sites for chondroitin sulphate chains.  相似文献   

4.
A cDNA clone for dermatan sulfate proteoglycan-II, or decorin, has been isolated from a rat uterus library and sequenced. The cDNA and deduced amino acid sequences are 79 and 77% identical to the previously reported human and bovine sequences, respectively. The rat protein contains potential attachment sites for two glycosaminoglycan chains and four N-linked oligosaccharides, six conserved cysteine residues and multiple repeats of a leucine-rich sequence, LXXLXLXXNXL/I. Overlapping the C-end of one of these repeats is an NKISK sequence, which has been implicated in binding to fibronectin.  相似文献   

5.
We have isolated cDNA clones encoding the core protein of PG-Lb, proteoglycan which has been shown to be preferentially expressed in the zone of flattened chondrocytes of the developing chick limb cartilage (Shinomura, T., Kimata, K., Oike, Y., Yano, S., and Suzuki, S. (1984) Dev. Biol. 103, 211-220). The deduced amino acid sequence from the cDNA analysis indicates the presence of consensus leucine-rich repeats which are present in other small proteoglycans, decorin, biglycan, and fibromodulin. However, the homology analysis revealed that chick PG-Lb showed a higher homology (about 50% in the region containing leucine-rich repeats) to human osteoinductive factor, OIF, rather than to the other small proteoglycans. Furthermore, 6 cysteine residues are detected in both PG-Lb and OIF with invariant relative positions. Therefore, such an evolutionarily conserved structure in the PG-Lb core protein might be involved in some important biological functions of this molecule. In close relation to the structural similarity to OIF, the unique expression of PG-Lb in the ossifying area of cartilage suggested the possible participation of this proteoglycan in osteogenic processes.  相似文献   

6.
The cDNA for the full-length core protein of the small chondroitin sulphate proteoglycan II of bovine bone was cloned and sequenced. A 1.3 kb clone (lambda Pg28) was identified by plaque hybridization with a previously isolated 1.0 kb proteoglycan cDNA clone (lambda Pg20), positively identified previously by polyclonal and monoclonal antibody reactivity and by hybrid-selected translation in vitro [Day, Ramis, Fisher, Gehron Robey, Termine & Young (1986) Nucleic Acids Res. 14, 9861-9876]. The cDNA sequences of both clones were identical in areas of overlap. The 360-amino-acid-residue protein contains a 30-residue propeptide of which the first 15 residues are highly hydrophobic. The mature protein consists of 330 amino acid residues corresponding to an Mr of 36,383. The core protein contains three potential glycosaminoglycan-attachment sites (Ser-Gly), only one of which is within a ten-amino-acid-residue homologous sequence seen at the known attachment sites of related small proteoglycans. Comparisons of the published 24-residue N-terminal protein sequence of bovine skin proteoglycan II core protein with the corresponding region in the deduced sequence of the bovine core protein reveals complete homology. Comparison of the cDNA-derived sequences of bovine bone and human embryonic fibroblast proteoglycans shows a hypervariable region near the N-terminus. Nucleotide homology between bone and fibroblast core proteins was 87% and amino acid homology was 90%.  相似文献   

7.
Tendon and corneal decorins are differently iduronated dermatan sulphate/proteoglycan (DS/PG) and the biochemical parameter that differentiates type I collagens is the hydroxylysine glycoside content. We have examined the effect of tendon and corneal decorins on the individual phases (tlag, dA/dt) of differently glycosylated type I collagens fibril formation, at molar ratios PG:collagen monomer ranging from 0.15 : 1 to 0.45 : 1. The results obtained indicate that decorins exert a different effect on the individual phases of fibril formation, correlated to the degree of glycosylation of collagen: at the same PG:collagen ratio the fibril formation of highly glycosylated corneal collagen is more efficiently inhibited than that of the poorly glycosylated one (tendon). Moreover tendon and corneal decorins exert a higher control on the fibrillogenesis of homologous collagen with respect to the heterologous one. These data suggest a possible tissue-specificity of the interaction decorin/type I collagen correlated to the structure of the PG and collagen present in extracellular matrices. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences.  相似文献   

9.
We isolated by the differential display technique a novel gene that was expressed abundantly in adipose and female-specific tissues. The cDNA contained an open reading frame of 2097 nucleotides encoding a 699-amino-acid peptide. The predicted protein showed homology to several known extracellular matrix (ECM) proteins such as proteoglycan, keratocan, and decorin. Moreover, the amino acid sequence contained several possible functional domains that would participate in protein–protein interactions, including an RGD sequence, a von Willebrand factor domain (VWFC), and a leucine-rich repeat. These findings suggest that this novel protein functions in cell–cell and/or cell–ECM recognition processes. Northern blot analysis revealed expression predominantly in adipose tissue as well as female-specific organs such as mammary gland, ovary, and uterus among 20 human adult tissues examined. We assigned the gene to chromosome 9q22.3 by means of fluorescencein situhybridization.  相似文献   

10.
1. The extracellular matrix (ECM) of rat skeletal muscle contains several proteoglycans (PGs). The more abundant correspond to a chondroitin/dermatan sulfate PG or decorin. 2. Decorin isolated from rat skeletal muscle ECM has a smaller molecular size than human fibroblast decorin. 3. The difference in size is mainly due to the glycosaminoglycan (GAG) chain length rather than the core protein size. 4. Peptide analysis of trypsin treated decorins shows at least three peptides with the same electrophoretic mobility.  相似文献   

11.
The primary structure of NG2, a novel membrane-spanning proteoglycan   总被引:15,自引:2,他引:13       下载免费PDF全文
The complete primary structure of the core protein of rat NG2, a large, chondroitin sulfate proteoglycan expressed on O2A progenitor cells, has been determined from cDNA clones. These cDNAs hybridize to an mRNA species of 8.9 kbp from rat neural cell lines. The total contiguous cDNA spans 8,071 nucleotides and contains an open reading frame for 2,325 amino acids. The predicted protein is an integral membrane protein with a large extracellular domain (2,224 amino acids), a single transmembrane domain (25 amino acids), and a short cytoplasmic tail (76 amino acids). Based on the deduced amino acid sequence and immunochemical analysis of proteolytic fragments of NG2, the extracellular region can be divided into three domains: an amino terminal cysteine-containing domain which is stabilized by intrachain disulfide bonds, a serine-glycine-containing domain to which chondroitin sulfate chains are attached, and another cysteine-containing domain. Four internal repeats, each consisting of 200 amino acids, are found in the extracellular domain of NG2. These repeats contain a short sequence that resembles the putative Ca(++)-binding region of the cadherins. The sequence of NG2 does not show significant homology with any other known proteins, suggesting that NG2 is a novel species of integral membrane proteoglycan.  相似文献   

12.
PG-Lb is a small dermatan sulfate proteoglycan that has been previously characterized in chicken. In the developing limb, chick PG-Lb appears to be exclusively expressed in the zone of flattened chondrocytes. We have cloned and sequenced the human homolog to chick PG-Lb from two human chondrocyte cDNA libraries and a human chondrocyte RNA sample. The human homolog has been named DSPG3, as it is the third member of the small dermatan sulfate proteoglycan family to be identified and characterized along with biglycan (PG-I) and decorin (PG-II). DSPG3 maps to chromosome 12q21 and is composed of 1515 nucleotides of cDNA that code for a 322-amino-acid protein. The protein contains three potential glycosaminoglycan attachment sites, two N-glycosylation sites, a poly- glutamic acid stretch, and six cysteines. By Northern analysis, we have demonstrated that DSPG3 is expressed in cartilage, as well as ligament and placental tissues.  相似文献   

13.
Asporin, a novel member of the leucine-rich repeat family of proteins, was partially purified from human articular cartilage and meniscus. Cloning of human and mouse asporin cDNAs revealed that the protein is closely related to decorin and biglycan. It contains a putative propeptide, 4 amino-terminal cysteines, 10 leucine-rich repeats, and 2 C-terminal cysteines. In contrast to decorin and biglycan, asporin is not a proteoglycan. Instead, asporin contains a unique stretch of aspartic acid residues in its amino-terminal region. A polymorphism was identified in that the number of consecutive aspartate residues varied from 11 to 15. The 8 exons of the human asporin gene span 26 kilobases on chromosome 9q31.1-32, and the putative promoter region lacks TATA consensus sequences. The asporin mRNA is expressed in a variety of human tissues with higher levels in osteoarthritic articular cartilage, aorta, uterus, heart, and liver. The deduced amino acid sequence of asporin was confirmed by mass spectrometry of the isolated protein resulting in 84% sequence coverage. The protein contains an N-glycosylation site at Asn(281) with a heterogeneous oligosaccharide structure and a potential O-glycosylation site at Ser(54). The name asporin reflects the aspartate-rich amino terminus and the overall similarity to decorin.  相似文献   

14.
Knowledge on fish matrix biology is important to ensure optimal fish -quality, -growth and -health in aquaculture. The aquaculture industry face major challenges related to matrix biology, such as inflammations and malformations. Atlantic cod skeletal muscle was investigated for collagen I, decorin, biglycan, and lumican expression and distribution by real-time PCR, immunohistochemical staining and Western blotting. Immunohistochemical staining and Western immunoblotting were also performed using antibodies against glycosaminoglycan side chains of these proteoglycans, in addition to fibromodulin. Real-time PCR showed highest mRNA expression of lumican and collagen I. Collagen I and proteoglycan immunohistochemical staining revealed distinct thread-like structures in the myocommata, with the exception of fibromodulin, which stained in dense structures embedded in the myocommata. Chondroitinase AC-generated epitopes stained more limited than cABC-generated epitopes, indicating a stronger presence of dermatan sulfate than chondroitin sulfate in cod muscle. Lumican and keratan sulfate distribution patterns were strong and ubiquitous in endomysia and myocommata. Western blots revealed similar SLRPs sizes in cod as are known from mammals. Staining of chondroitin/dermatan sulfate epitopes in Western blots were similar in molecular size to those of decorin and biglycan, whereas staining of keratan sulfate epitopes coincided with expected molecular sizes of lumican and fibromodulin. In conclusion, lumican was a major proteoglycan in cod muscle with ubiquitous distribution overlapping with keratan sulfate. Other leucine-rich proteoglycans were also present in cod muscle, and Western blot using antibodies developed for mammalian species showed cross reactivity with fish, demonstrating similar structures and molecular weights as in mammals.  相似文献   

15.
The small proteoglycans (PG) of bone consist of two different molecular species: one containing one chondroitin sulfate chain (PG II) and the other, two chains (PG I). These two proteoglycans are found in many connective tissues and have Mr = 45,000 core proteins with clear differences in their NH2-terminal sequences. Using antisera produced against synthetic peptides derived from the human PG I and PG II NH2 termini, we have isolated several cDNA clones from a lambda gt11 expression library made against mRNA isolated from human bone-derived cells. The clones, which reacted with antisera to the PG II peptide, were sequenced and found to be identical with the PG II class of proteoglycan from human fibroblasts known as PG-40 or decorin. The clones reacting to the PG I antisera, however, had a unique sequence. The derived protein sequence of PG I showed sufficient homology with the PG II sequence (55% of the amino acids are identical, with most others involving chemically similar amino acid substitutions) to strongly suggest that the two proteins were the result of a gene duplication. PG II (decorin) contains one attached glycosaminoglycan chain, while PG I probably contains two chains. For this reason, we suggest that PG I be called biglycan. The biglycan protein sequence contains 368 residues (Mr = 42,510 for the complete sequence and Mr = 37,983 for the secreted form) that appears to consist predominantly of a series of 12 tandem repeats of 24 residues. The repeats are recognized by their conserved leucines (and leucine-like amino acids) in positions previously reported for a diverse collection of proteins (none of which is thought to be proteoglycans) including: two morphogenic proteins (toll and chaoptin) in the fruit fly; a yeast adenylate cyclase; and two human proteins, the von Willebrand Factor-binding platelet membrane protein, GPIb, and a rare serum protein, leucine-rich glycoprotein.  相似文献   

16.
A previously isolated cDNA clone, pLK229, that is specific for mRNA developmentally expressed during Dictyostelium discoideum spore germination and multicellular development, was used to screen two genomic libraries. Two genomic sequences homologous to pLK229 were isolated and sequenced. Genomic clone p229 is identical to the cDNA clone pLK229 and codes for a polypeptide of 381 amino acids. This polypeptide is composed of five tandem repeats of the same 76-amino-acid sequence. Clone lambda 229 codes for a protein of 229 amino acids, containing three tandem repeats of the identical 76-amino-acid sequence. A computer search for homology to known proteins revealed that the 76-amino-acid repeat was identical to human and bovine ubiquitin except for two amino acid differences.  相似文献   

17.
18.
Decorin is a small leucine-rich chondroitin/dermatan sulfate proteoglycan reported to interact with fibrillar collagens through its protein core and to localize at d and e bands of the collagen fibril banding pattern. Using a solid-phase assay, we have determined the interaction of peptides derived by CNBr cleavage of type I and type II collagen with decorin extracted from bovine tendon and its protein core and with a recombinant decorin preparation. At least five peptides have been found to interact with all three decorin samples. The interaction of peptides with tendon decorin has a dissociation constant in the nanomolar range. The triple helical conformation of the peptide trimeric species is a necessary requisite for the binding. All positive peptides have a region within the d and e bands of collagen fibrils. Two chemical derivatives of collagens and of positive peptides were prepared by N-acetylation and N-methylation of the primary amino group of Lys/Hyl side chains. Chemical modifications performed in mild conditions do not significantly alter the thermal stability of peptide trimeric species whereas they affect the interaction with decorin: N-acetylation eliminates both the positive charge and the binding to decorin, whereas N-methylation preserves the cationic character and modulates the binding. We conclude that decorin makes contacts with multiple sites in type I collagen and probably also in type II collagen and that some collagen Lys/Hyl residues are essential for the binding.  相似文献   

19.
20.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号