首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Pilling C  Landgraf KE  Falke JJ 《Biochemistry》2011,50(45):9845-9856
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.  相似文献   

2.
The inositol lipid and phosphate binding properties and the cellular localization of phospholipase Cdelta(4) (PLCdelta(4)) and its isolated pleckstrin homology (PH) domain were analyzed in comparison with the similar features of the PLCdelta(1) protein. The isolated PH domains of both proteins showed plasma membrane localization when expressed in the form of a green fluorescent protein fusion construct in various cells, although a significantly lower proportion of the PLCdelta(4) PH domain was membrane-bound than in the case of PLCdelta(1)PH-GFP. Both PH domains selectively recognized phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), but a lower binding of PLCdelta(4)PH to lipid vesicles containing PI(4,5)P(2) was observed. Also, higher concentrations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) were required to displace the PLCdelta(4)PH from the lipid vesicles, and a lower Ins(1,4,5)P(3) affinity of PLCdelta(4)PH was found in direct Ins(1,4,5)P(3) binding assays. In sharp contrast to the localization of its PH domain, the full-length PLCdelta(4) protein localized primarily to intracellular membranes mostly to the endoplasmic reticulum (ER). This ER localization was in striking contrast to the well documented PH domain-dependent plasma membrane localization of PLCdelta(1). A truncated PLCdelta(4) protein lacking the entire PH domain still showed the same ER localization as the full-length protein, indicating that the PH domain is not a critical determinant of the localization of this protein. Most important, the full-length PLCdelta(4) enzyme still showed binding to PI(4,5)P(2)-containing micelles, but Ins(1,4,5)P(3) was significantly less potent in displacing the enzyme from the lipid than with the PLCdelta(1) protein. These data suggest that although structurally related, PLCdelta(1) and PLCdelta(4) are probably differentially regulated in distinct cellular compartments by PI(4,5)P(2) and that the PH domain of PLCdelta(4) does not act as a localization signal.  相似文献   

3.
The spectrin cytoskeleton assembles within discrete regions of the plasma membrane in a wide range of animal cell types. Although recent studies carried out in vertebrate systems indicate that spectrin assembly occurs indirectly through the adapter protein ankyrin, recent studies in Drosophila have established that spectrin can also assemble through a direct ankyrin-independent mechanism. Here we tested specific regions of the spectrin molecule for a role in polarized assembly and function. First, we tested mutant beta-spectrins lacking ankyrin binding activity and/or the COOH-terminal pleckstrin homology (PH) domain for their assembly competence in midgut, salivary gland, and larval brain. Remarkably, three different assembly mechanisms operate in these three cell types: 1) neither site was required for assembly in salivary gland; 2) only the PH domain was required in midgut copper cells; and 3) either one of the two sites was sufficient for spectrin assembly in larval brain. Further characterization of the PH domain revealed that it binds strongly to lipid mixtures containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not phosphatidylinositol 3,4,5-trisphosphate. A K8Q mutation in the lipid binding region of the PH domain eliminated the PIP(2) interaction in vitro, yet the mutant protein retained full biological function in vivo. Reporter gene studies revealed that PIP(2) and the spectrin PH domain codistribute with one another in cells but not with authentic wild type alphabeta-spectrin. Thus, it appears that the PH domain imparts membrane targeting activity through a second mechanism that takes precedence over its PIP(2) binding activity.  相似文献   

4.
The second messenger lipid PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3)-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP(3)-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3) lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3). The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP(3) target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP(3) on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3) headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3) headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3) headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP(3)-bound GRP1 PH domain on supported lipid bilayers.  相似文献   

5.
Type I phosphatidylinositol 4-phosphate (PI(4)P) 5-kinases (PIP5Ks) catalyze the synthesis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), an essential lipid molecule involved in various cellular processes such as regulation of actin cytoskeleton and membrane traffic. The protein localizes to the plasma membrane where its activity has been shown to be regulated by small GTPase ARFs and/or phosphatidic acid. Deletion analysis of amino- or carboxy-terminal sequences of PIP5Kgamma fused with EGFP demonstrated that the presence of central kinase homology domain (KHD), a 380 amino acid-long region highly conserved among PIP5K family, was necessary and sufficient for the plasma membrane localization of PIP5Kgamma. Particularly, the dibasic Arg-Lys sequence located at the carboxy-terminal end of KHD was shown to be crucial for the plasma membrane targeting of PIP5Kgamma, since the deletion or charge-reversal mutation of this dibasic sequence resulted in the mislocalization of the protein to the cytoplasm. Mislocalized mutants also failed to complement the temperature-sensitive growth of Saccharomyces cerevisiae mss4-1 mutant defective in PIP5K function. The presence of dibasic residues at the C-terminal end of KHD was conserved among mammalian as well as invertebrate PIP5K family members, but not in the type II PIPKs that are not targeted to the plasma membrane, suggesting that the conserved dibasic motif provides a mechanism essential for the proper localization and cellular function of PIP5Ks.  相似文献   

6.
Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) has been proposed to act as a second messenger to recruit regulatory proteins to the plasma membrane via their pleckstrin homology (PH) domains. The PH domain of Bruton's tyrosine kinase (Btk), which is mutated in the human disease X-linked agammaglobulinemia, has been shown to interact with PI(3,4,5)P3 in vitro. In this study, a fusion protein containing the PH domain of Btk and the enhanced green fluorescent protein (BtkPH-GFP) was constructed and utilized to study the ability of this PH domain to interact with membrane inositol phospholipids inside living cells. The localization of expressed BtkPH-GFP in quiescent NIH 3T3 cells was indistinguishable from that of GFP alone, both being cytosolic as assessed by confocal microscopy. In NIH 3T3 cells coexpressing BtkPH-GFP and the epidermal growth factor receptor, activation of epidermal growth factor or endogenous platelet-derived growth factor receptors caused a rapid (<3 min) translocation of the cytosolic fluorescence to ruffle-like membrane structures. This response was not observed in cells expressing GFP only and was completely inhibited by treatment with the PI 3-kinase inhibitors wortmannin and LY 292004. Membrane-targeted PI 3-kinase also caused membrane localization of BtkPH-GFP that was slowly reversed by wortmannin. When the R28C mutation of the Btk PH domain, which causes X-linked agammaglobulinemia, was introduced into the fluorescent construct, no translocation was observed after stimulation. In contrast, the E41K mutation, which confers transforming activity to native Btk, caused significant membrane localization of BtkPH-GFP with characteristics indicating its possible binding to PI(4,5)P2. This mutant, but not wild-type BtkPH-GFP, interfered with agonist-induced PI(4,5)P2 hydrolysis in COS-7 cells. These results show in intact cells that the PH domain of Btk binds selectively to 3-phosphorylated lipids after activation of PI 3-kinase enzymes and that losing such binding ability or specificity results in gross abnormalities in the function of the enzyme. Therefore, the interaction with PI(3,4,5)P3 is likely to be an important determinant of the physiological regulation of Btk and can be utilized to visualize the dynamics and spatiotemporal organization of changes in this phospholipid in living cells.  相似文献   

7.
Corbin JA  Dirkx RA  Falke JJ 《Biochemistry》2004,43(51):16161-16173
Pleckstrin homology (PH) domains play a central role in a wide array of signaling pathways by binding second messenger lipids of the phosphatidylinositol phosphate (PIP) lipid family. A given type of PIP lipid is formed in a specific cellular membrane where it is generally a minor component of the bulk lipid mixture. For example, the signaling lipid PI(3,4,5)P(3) (or PIP(3)) is generated primarily in the inner leaflet of the plasma membrane where it is believed to never exceed 0.02% of the bulk lipid. The present study focuses on the PH domain of the general receptor for phosphoinositides, isoform 1 (GRP1), which regulates the actin cytoskeleton in response to PIP(3) signals at the plasma membrane surface. The study systematically analyzes both the equilibrium and kinetic features of GRP1-PH domain binding to its PIP lipid target on a bilayer surface. Equilibrium binding measurements utilizing protein-to-membrane fluorescence resonance energy transfer (FRET) to detect GRP1-PH domain docking to membrane-bound PIP lipids confirm specific binding to PIP(3). A novel FRET competitive binding measurement developed to quantitate docking affinity yields a K(D) of 50 +/- 10 nM for GRP1-PH domain binding to membrane-bound PIP(3) in a physiological lipid mixture approximating the composition of the plasma membrane inner leaflet. This observed K(D) lies in a suitable range for regulation by physiological PIP(3) signals. Interestingly, the affinity of the interaction decreases at least 12-fold when the background anionic lipids phosphatidylserine (PS) and phosphatidylinositol (PI) are removed from the lipid mixture. Stopped-flow kinetic studies using protein-to-membrane FRET to monitor association and dissociation time courses reveal that this affinity decrease arises from a corresponding decrease in the on-rate for GRP1-PH domain docking with little or no change in the off-rate for domain dissociation from membrane-bound PIP(3). Overall, these findings indicate that the PH domain interacts not only with its target lipid, but also with other features of the membrane surface. The results are consistent with a previously undescribed type of two-step search mechanism for lipid binding domains in which weak, nonspecific electrostatic interactions between the PH domain and background anionic lipids facilitate searching of the membrane surface for PIP(3) headgroups, thereby speeding the high-affinity, specific docking of the domain to its rare target lipid.  相似文献   

8.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

9.
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.  相似文献   

10.
Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P(3) on the membrane nearest the polarizing signal and PI(3,4,5)P(3) dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P(2), could have important consequences for PI(3,4,5)P(3) localization. We investigate the role of PLC in PI(3,4,5)P(3)-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P(3) after cAMP stimulation, as monitored by the PI(3,4,5)P(3)-specific pleckstrin homology (PH)-domain of CRAC (PH(CRAC)GFP). In contrast, PLC overexpression elevates PI(3,4,5)P(3) and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P(3) gradient.  相似文献   

11.
The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).  相似文献   

12.
We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5 min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells.  相似文献   

13.
We have investigated the participation of endogenous ADP-ribosylation factor (ARF) nucleotide-binding site opener (ARNO) in desensitization of the luteinizing hormone/choriogonadotropin (LH/CG) receptor, independent of receptor internalization, using a cell-free plasma membrane model. We recently showed that the addition of recombinant ARNO promotes binding of beta-arrestin1 to the third intracellular (3i) loop of the active LH/CG receptor, thereby reducing the ability of the receptor to activate the stimulatory G protein and signal to adenylyl cyclase. In the present report we determined whether ARNO is detectable in follicular membranes and whether the catalytically inactive E156K ARNO mutant, containing a mutation in the Sec7 domain, can act in a dominant negative manner to block LH/CG receptor desensitization. Results show that ARNO is readily detected in follicular membranes and that levels of membrane-associated ARNO increase with follicular maturation. The addition of catalytically inactive E156K ARNO blocks both the release of beta-arrestin1 from its membrane docking site, based on Western blot analysis, and development of LH/CG receptor desensitization. We also investigated whether a point mutation in the pleckstrin homology (PH) domain of ARNO (R280D), which blocks binding of phosphoinositides like phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not catalytic activity, disrupts LH/CG receptor desensitization. R280D ARNO neither promotes nor inhibits LH/CG receptor desensitization, consistent with a requirement of the PH domain of ARNO for its association with the plasma membrane. LH/CG receptor activation of ARNO is not mediated by activation of phosphatidylinositol 3-kinase (PI 3-kinase) or by G protein beta gamma subunits. Taken together, these results suggest that LH/CG receptor promotes beta-arrestin1 release from its membrane docking site to bind to the 3i loop of the LH/CG receptor via activation of membrane delimited endogenous ARNO. As ARNO activation is independent of PI 3-kinase and G beta gamma, our results are consistent with a role for PIP(2) in receptor-stimulated ARNO activation.  相似文献   

14.
Previously, we demonstrated that a protein that binds phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] inhibits both light-induced stomatal opening and ABA-induced stomatal closing. The latter effect is due to a reduction in free PtdIns(4,5)P(2), decreasing production of inositol 1,4,5-trisphosphate and phosphatidic acid by phospholipases C and D. However, it is less clear how PtdIns(4,5)P(2) modulates stomatal opening. We found that in response to white light irradiation, the PtdIns(4,5)P(2)-binding domain GFP:PLCdelta1PH translocated from the cytosol into the plasma membrane. This suggests that the level of PtdIns(4,5)P(2) increases at the plasma membrane upon illumination. Exogenously administered PtdIns(4,5)P(2) substituted for light stimuli, inducing stomatal opening and swelling of guard cell protoplasts. To identify PtdIns(4,5)P(2) targets we performed patch-clamp experiments, and found that anion channel activity was inhibited by PtdIns(4,5)P(2). Genetic analyses using an Arabidopsis PIP5K4 mutant further supported the role of PtdIns(4,5)P(2) in stomatal opening. The reduced stomatal opening movements exhibited by a mutant of Arabidopsis PIP5K4 (At3g56960) was countered by exogenous application of PtdIns(4,5)P(2). The phenotype of reduced stomatal opening in the pip5k4 mutant was recovered in lines complemented with the full-length PIP5K4. Together, these data suggest that PIP5K4 produces PtdIns(4,5)P(2) in irradiated guard cells, inhibiting anion channels to allow full stomatal opening.  相似文献   

15.
Phosphoinositide 3-kinases (PI3Ks) generate several distinct lipid second messengers including phosphatidylinositol (3,4,5) trisphosphate (PIP3) and phosphatidylinositol (3,4) bisphosphate PI(3,4)P2. PI(3,4)P2 is produced with distinct kinetics and binds to distinct PH domain effector proteins; however, the regulation of this signaling pathway is poorly understood. Superoxides such as hydrogen peroxide are transiently produced after activation through various cell surface receptors and play important roles in immune and inflammatory responses. Here we use quantitative microscopy to examine the effect of peroxide on PI(3,4)P2-mediated mobilization of signaling proteins in B lymphocytes. Peroxide was found to induce dose-dependant membrane recruitment of the PI(3,4)P2-binding PH domain proteins Bam32, TAPP2 and Akt/PKB but not the PIP3-binding PH domain of Btk. Peroxide-induced membrane recruitment was found to be dependant on PI3K activity, with the p110delta isoform contributing much of the activity in the BJAB human B lymphoma model. Strikingly, peroxide co-stimulation enhanced antigen receptor-induced membrane recruitment of Bam32 and TAPP2, with combined stimulation exceeding the maximum achievable with either stimulus alone. Expression of the lipid phosphatase PTEN led to reduction of antigen receptor-induced membrane recruitment of TAPP2; however, peroxide costimulation could overcome the inhibitory effect of PTEN. Inhibition of the NADPH oxidase led to reduction of antigen receptor-induced membrane recruitment of TAPP2. Our results indicate that exogenous and endogenous superoxides can modulate the quality of the PI3K signal in lymphocytes by selectively increasing PI(3,4)P2-dependant signaling.  相似文献   

16.
Macia E  Paris S  Chabre M 《Biochemistry》2000,39(19):5893-5901
The activity on ARF of the guanine nucleotide exchange factor ARNO depends on its membrane recruitment, induced by binding of its PH domain to phosphoinositides. A polycationic C-terminal extension to the PH domain might also contribute to its specific binding to phosphatidylinositol 4,5-bisphosphate [(4,5)PIP2] and to phosphatidylinositol 3,4,5-trisphosphate [(3,4,5)PIP3], and to ionic binding to other acidic lipids. We have analyzed in vitro the relative contributions to phospholipid binding of the PH domain and C-terminal extension by cosedimentation of "PH+C domain" and "nominal PH domain" protein constructs including or not including the polycationic C-terminus, with sucrose-loaded unilamellar vesicles made of equal proportions of the neutral lipids phosphatidylcholine and phosphatidylethanolamine, and supplemented or not with 30% acidic phosphatidylserine (PS) and 2% of various phosphoinositides. Binding was measured as a function of the vesicle concentration and of the medium ionic strength. Both proteins bound with higher affinity to (3,4,5)PIP3 than to (4,5)PIP2, the selectivity for (3,4,5)PIP3 being highest for the nominal PH domain. We observed also a clear selectivity of (3,4,5)PIP3 over (4,5)PIP2 for stimulating the activity of ARNO on ARF with vesicles containing 10% PS and 1% PIP2 or PIP3. Our data suggest that the PH domain provides the specific phosphoinositide binding site and some unspecific ionic interaction with acidic PS, whereas the polybasic C domain contributes to binding mainly by unspecific ionic interactions vith PS. Phosphorylation by protein kinase C of a serine in the C domain reduces the ionic affinity of the PH+C domain for PS, but does not affect the phosphoinositide specificity.  相似文献   

17.
Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH) domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs) in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD) and molecular dynamics (MD) simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)). The interaction of GRP1-PH with PI(3,4,5)P(3) in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic 'decoy' lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5)P(3)-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as 'decoys', disrupting the interaction of GRP1-PH with the PI(3,4,5)P(3) molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5)P(3) within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5)P(3), forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation.  相似文献   

18.
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles.  相似文献   

19.
Cell division is achieved by a plasma membrane furrow that must ingress between the segregating chromosomes during anaphase [1-3]. The force that drives furrow ingression is generated by the actomyosin cytoskeleton, which is linked to the membrane by an as yet undefined molecular mechanism. A key component of the membrane furrow is anillin. Upon targeting to the furrow through its pleckstrin homology (PH) domain, anillin acts as a scaffold linking the actomyosin and septin cytoskeletons to maintain furrow stability (reviewed in [4, 5]). We report that the PH domain of anillin interacts with phosphatidylinositol phosphate lipids (PIPs), including PI(4,5)P(2), which is enriched in the furrow. Reduction of cellular PI(4,5)P(2) or mutations in the PH domain of anillin that specifically disrupt the interaction with PI(4,5)P(2), interfere with the localization of anillin to the furrow. Reduced expression of anillin disrupts symmetric furrow ingression that can be restored by targeting ectopically expressed anillin to the furrow using an alternate PI(4,5)P(2) binding module, a condition where the septin cytoskeleton is not recruited to the plasma membrane. These data demonstrate that the anillin PH domain has two functions: targeting anillin to the furrow by binding to PI(4,5)P(2) to maintain furrow organization and recruiting septins to the furrow.  相似文献   

20.
The delta family phosphoinositide (PI)-specific phospholipase C (PLC) are most fundamental forms of eukaryotic PI-PLCs. Despite the presence of lipid targeting domains such as the PH domain and C2 domain, the isoforms are also found in the cytoplasm and nucleus as well as at the plasma membrane. The isoforms have sequences or regions that can serve as a nuclear localization signal (NLS) and a nuclear export signal (NES). Their intracellular localization differs from one isoform to another, presumably due to the difference in the transport equilibrium balanced by the strength of the two signals of each isoform. Even for a particular isoform, its intracellular localization seems to vary during the cell cycle. As an example, PLCdelta(1), which is generally found at the plasma membrane and in the cytoplasm of quiescent cells, localizes to discrete nuclear structures in the G(1)/S boundary of the cell cycle. This may be at least partly due to an increase in intracellular Ca(2+), since Ca(2+) facilitates the formation of a nuclear transport complex comprised of PLCdelta(1) and importin beta1, a carrier molecule for the nuclear import. PLCdelta(1) as well as PLCdelta(4) may play a pivotal role in controlling the initiation of DNA synthesis in S phase. Spatio-temporal changes in the levels of PtdIns(4,5)P(2) seem to be another major determinant for the localization and regulation of the delta isoforms. High nuclear PtdIns(4,5)P(2) levels are associated with the G(1)/S phases. After entering M phase, PtdIns(4,5)P(2) synthesis at sites of cell division occurs and PLCs seem to localize to the cleavage furrow during cytokinesis. Coordinated translocation of PLCs with the cell cycle or with stress responses may result in changes in intra-nuclear environments and local membrane architectures that modulate proliferation and differentiation. In this review, recent findings regarding the molecular machineries and mechanisms of the nucleocytoplasmic shuttling as well as roles in the cell cycle progression of the delta isoforms of PLC will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号