首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to generate geranyl diphosphate, the essential precursor of monoterpene biosynthesis. Using geranylgeranyl diphosphate synthase from Taxus canadensis as a hybridization probe, four full length cDNA clones, sharing high sequence identity to each other (>69%) and to the Taxus geranylgeranyl diphosphate synthase (>66%), were isolated from a grand fir (Abies grandis) cDNA library. When expressed in Escherichia coli, three of the recombinant enzymes produced geranyl diphosphate and one produced geranylgeranyl diphosphate as the dominant product when supplied with isopentenyl diphosphate and dimethylallyl diphosphate as cosubstrates. One enzyme (AgGPPS2) was confirmed as a specific geranyl diphosphate synthase, in that it accepted only dimethylallyl diphosphate as the allylic cosubstrate and it produced exclusively geranyl diphosphate as product, with a k(cat) of 1.8s(-1). Gel filtration experiments performed on the recombinant geranyl diphosphate synthases, in which the plastidial targeting sequences had been deleted, revealed that these enzymes are homodimers similar to other short-chain prenyltransferases but different from the heterotetrameric geranyl diphosphate synthase of mint.  相似文献   

2.
Mentha citrata Ehrh. (bergamot mint; Lamiaceae) produces an essential oil containing only the acyclic monoterpenol (-)-3R-linalool and its acetate ester. A cloning strategy based upon the assumption that the responsible monoterpene synthase would resemble, in sequence, monoterpene cyclases from this plant family yielded a cDNA encoding the (--)-3R-linalool synthase. The nucleotide sequence of this monoterpene synthase is similar to those of several monoterpene cyclases from the mint (Lamiaceae) family (62-72% identity), but differs substantially from that of 3S-linalool synthase from Clarkia (41% identity; this composite gene appears to be of recent origin) and from that of 3R-linalool synthase from Artemisia (52% identity; the functional role of this gene is uncertain). Heterologous expression in Escherichia coli of a truncated version of the cDNA (in which the plastidial transit peptide was deleted) allowed purification and characterization of the enzyme, which was shown to possess most properties similar to other known monoterpene cyclases, but with a K(m) value for the natural substrate, geranyl diphosphate, of 56 microM with k(cat) of 0.83 s(-1). These kinetic constants for this 3R-linalool synthase are higher than those of any defined monoterpene cyclase, but the kinetic efficiency does not approach that reported for the 3S-linalool synthase from Clarkia. Although linalyl diphosphate is an enzyme-bound intermediate of monoterpene cyclase reactions, this tertiary allylic isomer of the geranyl substrate is not an efficient precursor of linalool with the M. citrata synthase. Modeling of the active site of this linalool synthase from Mentha and comparison to the modeled active sites of phylogenetically related monoterpene cyclases revealed structural differences in the binding of the diphosphate moiety which initiates the ionization step of the electrophilic reaction sequence and in the access of water to the active site to permit stereoselective quenching of the initially formed carbocationic intermediate to produce 3R-linalool.  相似文献   

3.
4.
Unusual features of a recombinant apple alpha-farnesene synthase   总被引:3,自引:0,他引:3  
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.  相似文献   

5.
6.
The essential oil of Salvia stenophylla contains (+)-3-carene as the principal monoterpene component. Using an enriched cDNA library prepared from mRNA isolated from S. stenophylla peltate glandular trichomes, and a homology-based cloning strategy, a full-length cDNA was isolated that encoded a preprotein of 69.7 kDa which resembled a monoterpene synthase in sequence. Heterologous expression of the gene in Escherichia coli provided a soluble recombinant enzyme capable of catalyzing the divalent metal ion-dependent conversion of geranyl diphosphate to (+)-3-carene and to lesser amounts of limonene, myrcene, 4-carene and beta-phellandrene. This multiple-product synthase is responsible for the production of all of the essential oil monoterpenes of S. stenophylla.  相似文献   

7.
The monoterpene fraction of the lemon-scented sweet basil (Ocimum basilicum) cv Sweet Dani consists mostly of citral (a mixture of geranial and neral), with lower levels of geraniol and nerol. These compounds are stored in the peltate glands found on the leaf epidermis. Younger leaves, which have a higher density of such glands, also have a higher content of monoterpenes than older leaves. Geraniol synthase (GES) activity, generating geraniol from geranyl diphosphate, was shown to be localized exclusively or almost exclusively to glands. GES activity resides in a homodimeric protein that was purified to near homogeneity. Basil GES requires Mn2+ as a divalent metal cofactor for activity and produces only geraniol from geranyl diphosphate. Km values of 21 and 51 microM were obtained for geranyl diphosphate and Mn2+, respectively. In the presence of 18O-labeled water, GES catalyzed the formation of 18O-geraniol from geranyl diphosphate, indicating that the reaction mechanism of GES is similar to that of other monoterpene synthases and is different from the action of phosphatases. A GES cDNA was isolated based on analysis of a glandular trichome expressed sequence tag database, and the sequence of the protein encoded by this cDNA shows some similarity to sequences of other terpene synthases. The expression of the GES cDNA in Escherichia coli resulted in a protein with enzymatic activity essentially identical to that of plant-purified GES. RNA gel-blot analysis indicated that GES is expressed in glands but not in leaves of basil cv Sweet Dani, whose glands contain geraniol and citral, and not in glands or leaves of another basil variety that makes other monoterpenes but not geraniol or citral.  相似文献   

8.
Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L−1. The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae.  相似文献   

9.
The acyclic monoterpene myrcene is the likely progenitor of the unusual cytotoxic halogenated monoterpenes that are found in marine algae and that function as feeding deterrents to herbivores. Myrcene synthase was isolated from suspension cultures of the marine red alga Ochtodes secundiramea, representing the first enzyme of this type from a marine organism. The algal myrcene synthase produces exclusively myrcene from the natural substrate geranyl diphosphate (GDP), utilizes Mg(+2) as the required divalent metal ion cofactor, has a molecular mass of about 69 kDa, and exhibits a pH optimum near 7.2. These features are similar to those of monoterpene synthases from terrestrial organisms. When incubated with neryl diphosphate (the cis-isomer of GDP), the O. secundiramea myrcene synthase produces the cyclic monoterpene limonene, whereas incubation with (+/-)linalyl diphosphate (the tertiary allylic isomer of geranyl diphosphate) yields both acyclic and cyclic monoterpenes. These results suggest that the enzyme is incapable of isomerizing geranyl diphosphate to linalyl diphosphate, a feature common to all monoterpene cyclases from terrestrial sources. The limited catalytic capability of the myrcene synthase may reflect the ancient evolutionary origin of the producing organism. The ability to assay this enzyme in cultured algae, grown under strictly defined conditions, provides an unparalleled opportunity to delineate factors eliciting the biosynthesis of this class of secondary metabolites, to investigate the metabolic pathway leading to the halogenated monoterpenes, and to determine their role in the chemical ecology of marine algae.  相似文献   

10.
11.
Geranyl diphosphate synthase catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give a C(10) compound, geranyl diphosphate, which is a precursor of all monoterpenoids. However, the gene has not been isolated from any organisms. To examine the possibility that geranyl diphosphate synthase has evolved from a common ancestor of the prenyltransferase family and to predict the active site structure, we tried to convert Bacillus stearothermophilus farnesyl diphosphate synthase to geranyl diphosphate synthase, according to our previous findings. Several mutated farnesyl diphosphate synthases that have single amino acid substitutions before the first aspartate-rich motif were constructed. A mutated enzyme that has the replacement of serine by phenylalanine at the fourth position before the motif exclusively produced geranyl diphosphate when dimethylallyl diphosphate was used as the primer, and hardly accepted geranyl diphosphate as a primer, indicating that this mutation causes the conversion to geranyl diphosphate synthase. This result supports the idea that the product specificities of all members of the E-prenyltransferase family are mainly defined by a few structural features: the amino acids at the fourth position and the fifth position before the first aspartate-rich motif, and the insertion of two amino acids in the motif. This suggests that natural geranyl diphosphate synthases might have an active site structure similar to that of the mutated enzyme.  相似文献   

12.
Monoterpene cyclization reactions are initiated by ionization and isomerization of geranyl diphosphate, and proceed, via cyclization of bound linalyl diphosphate, through a series of carbocation intermediates with ultimate termination of the multistep cascade by deprotonation or nucleophile capture. Three structurally and mechanistically related monoterpene cyclases from Salvia officinalis, (+)-sabinene synthase (deprotonation to olefin), 1,8-cineole synthase (water capture), and (+)-bornyl diphosphate synthase (diphosphate capture), were employed to explore the structural determinants of these alternative termination chemistries. Results with chimeric recombinant enzymes, constructed by reciprocally substituting regions of sabinene synthase with the corresponding sequences from bornyl diphosphate synthase or 1,8-cineole synthase, demonstrated that exchange of the C-terminal catalytic domain is sufficient to completely switch the resulting product profile. Exchange of smaller sequence elements identified a region of roughly 70 residues from 1,8-cineole synthase that, when substituted into sabinene synthase, conferred the ability to produce 1,8-cineole. A similar strategy identified a small region of bornyl diphosphate synthase important in conducting the anti-Markovnikov addition to the bornane skeleton. Observations made with these chimeric monoterpene cyclases are discussed in the context of the recently determined crystal structure for bornyl diphosphate synthase.  相似文献   

13.
14.
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.  相似文献   

15.
Monoterpene biosynthesis pathway construction in Escherichia coli   总被引:3,自引:0,他引:3  
Four genes encoding sequential steps for the biosynthesis of the spearmint monoterpene ketone (-)-carvone from the C(5) isoprenoid presursors isopentenyl diphosphate and dimethylallyl diphosphate were installed in Escherichia coli. Inducible overexpression of these genes in the bacterial host allowed production of nearly 5 mg/l of the pathway intermediate (-)-limonene, which was mostly excreted to the medium such that products of the downstream steps, (-)-carveol and (-)-carvone, were not detected. Assay of pathway enzymes and intermediates indicated that flux through the initial steps catalyzed by geranyl diphosphate synthase and limonene synthase was severely limited by the availability of C(5) isoprenoid precursors in the host. Feeding studies with (-)-limonene, to overcome the flux deficiency, demonstrated the functional capability of limonene-6-hydroxylase and carveol dehydrogenase to produce the end-product carvone; however, uptake and trafficking restrictions greatly compromised the efficiency of these conversions.  相似文献   

16.
Gamma-terpinene is a monoterpene and a major component of essential oils made from citrus fruits and shows strong antioxidant activity in various assay systems. Plant gamma-terpinene synthase is a member of the monoterpene cyclase family, which produces a specific monoterpene through cyclization of geranyl diphosphate (GPP), but the monoterpene cyclases have not been fully characterized. It is necessary to prepare large amounts of gamma-terpinene synthase from Citrus unshiu (Satsuma mandarin) for the characterization, on this purpose we expressed the protein in Escherichia coli (E. coli) cells. As most monoterpene synthases have plastid-targeting signals, a gene lacking these signals was prepared and functionally expressed in E. coli cells harboring extra copies of the argU gene. The purified enzyme was incubated with GPP and the main product was confirmed to be gamma-terpinene by GC/MS.  相似文献   

17.
Palmarosa inflorescence with partially opened spikelets is biogenetically active to incorporate [U-14C]sucrose into essential oil. The percent distribution of14C-radioactivity incorporated into geranyl acetate was relatively higher as compared to that in geraniol, the major essential oil constituent of palmarosa. At the partially opened spikelet stage, more of the geraniol synthesized was acetylated to form geranyl acetate, suggesting that majority of the newly synthesized geraniol undergoes acetylation, thus producing more geranyl acetate.In vitro development of palmarosa inflorescence, fed with [U-14C]sucrose, resulted in a substantial reduction in percent label from geranyl acetate with a corresponding increase in free geraniol, thereby suggesting the role of an esterase in the production of geraniol from geranyl acetate. At time course measurement of14CO2 incorporation into geraniol and geranyl acetate substantiated this observation. Soluble acid invertase was the major enzyme involved in the sucrose breakdown throughout the inflorescence development. The activities of cell wall bound acid invertase, alkaline invertase and sucrose synthase were relatively lower as compared to the soluble acid invertase. Sucrose to reducing sugars ratio decreased till fully opened spikelets stage, concomitant with increased acid invertase activity and higher metabolic activity. The phenomenon of essential oil biosynthesis has been discussed in relation to changes in these physiological parameters.  相似文献   

18.
Cell-free homogenates from sage (Salvia officinalis) leaves convert dimethylallyl pyrophosphate and isopentenyl pyrophosphate to a mixture of geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate, with farnesyl pyrophosphate predominating. These prenyltransferase activities were localized primarily in the soluble enzyme fraction, and separation of this preparation on Sephadex G-150 revealed the presence of a partially resolved, labile geranyl pyrophosphate synthase activity. The product of the condensation reaction between [1-14C]dimethylallyl pyrophosphate and [1-3H]isopentenyl pyrophosphate was verified as [14C,1-3H]geranyl pyrophosphate by TLC isolation, enzymatic hydrolysis to geraniol, degradative studies, and the preparation of the crystalline diphenylurethane. The cis-isomer, neryl pyrophosphate, was not a product of the enzymatic reaction. By employing a selective tissue extraction procedure, the geranyl pyrophosphate synthase activity was localized in the leaf epidermal glands, the site of monoterpene biosynthesis, suggesting that the role of this enzyme is to supply the C10 precursor for the production of monoterpenes. Glandular extracts enriched in geranyl pyrophosphate synthase were partially purified by a combination of hydrophobic interaction chromatography on phenyl-Sepharose and gel permeation chromatography on Sephadex G-150. Substrate and product specificity studies confirmed the selective synthesis of geranyl pyrophosphate by this enzyme, which was also characterized with respect to molecular weight, pH optimum, cation requirement, inhibitors, and kinetic parameters, and shown to resemble other prenyltransferases.  相似文献   

19.
Miller B  Oschinski C  Zimmer W 《Planta》2001,213(3):483-487
For the first time, the complete functional gene for isoprene synthase has been isolated from poplar (Populus alba x Populus tremula). The gene was quite similar to known limonene and other monoterpene synthases, but was found to specifically catalyze the formation of isoprene from the precursor dimethylallyl diphosphate with only a marginal activity for the formation of the monoterpene limonene from geranyl diphosphate as compared with limonene synthases. Omitting the part of the gene that putatively encoded the signal peptide necessary for transport into the chloroplast led to an enhanced rate of isoprene formation by the recombinant protein.  相似文献   

20.
Rohloff J 《Phytochemistry》2002,59(6):655-661
Terpenes and aroma volatiles from rhizomes of Rhodiola rosea L. from Norway have been isolated by both steam distillation and headspace solid-phase micro-extraction coupled with gas chromatography and mass spectrometry analysis. The dried rhizomes contained 0.05% essential oil with the main chemical classes: monoterpene hydrocarbons (25.40%), monoterpene alcohols (23.61%) and straight chain aliphatic alcohols (37.54%). n-Decanol (30.38%), geraniol (12.49%) and 1,4-p-menthadien-7-ol (5.10%) were the most abundant volatiles detected in the essential oil, and a total of 86 compounds were identified in both the SD and HS-SPME samples. Geraniol was identified as the most important rose-like odour compound besides geranyl formate, geranyl acetate, benzyl alcohol and phenylethyl alcohol. Floral notes such as linalool and its oxides, nonanal, decanal, nerol and cinnamyl alcohol highlight the flowery scent of rose root rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号