首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Tissue-specific gene ablation is accomplished by combining conventional gene targeting approaches with site-specific recombinases such as the Cre/loxP system. Despite the use of a cardiac-specific rat myosin light chain II promoter, our transgenic line (CRE3) had little or no Cre expression in the heart; however, strong Cre activity was detected in the brain as early as gestation day E11.5. This was determined by several methods including crossing our mouse line with a lacZ indicator line (ROSA26). Transgenic Cre, in this mouse line, mediated DNA recombination of loxP-flanked genes selectively in neurons throughout the gray matter of the brain, cerebellum, spinal cord, as well as retina, dorsal, and sympathetic ganglia. Cre protein was also detected by immunohistochemistry exclusively in neurons, but not in other types of cells or tissues. Thus, our transgenic CRE3 mice provide pan-neuronal expression of CRE for carrying out conditional deletion of genes in neurons and their progenitors.  相似文献   

2.
Weber T  Schönig K  Tews B  Bartsch D 《PloS one》2011,6(11):e28283
The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.  相似文献   

3.
Diphtheria toxin A-chain (DT-A) is a potent inhibitor of protein synthesis. As little as a single molecule of DT-A can result in cell death. DT-A gene driven by a tissue-specific promoter is used to achieve genetic ablation of a particular cell lineage. However, this transgenic approach often results in aberrant depletion of unrelated cells. To avoid this, we established a method for specific depletion of a cell population by controlled expression of the DT-A gene via the Cre-loxP system. We produced five transgenic mice carrying CETD construct containing loxP-flanked enhanced green fluorescent protein (EGFP) cDNA and the DT-A gene. Transfection of primary cultured cells derived from CETD transgenic fetus with Cre expression plasmid resulted in extensive cell loss, as expected. Bigenic (double transgenic) offspring obtained by crossbreeding between CETD and MNCE transgenic mice in which Cre expression is controlled by the myelin basic protein (MBP) promoter exhibited embryonic lethality, suggesting expression of Cre at embryonic stages. Intravenous injection of Cre expression vector to CETD mice led to generation of glomerular lesions, probably due to predominant depletion of glomerular epithelial cells. This Cre-loxP-based cell ablation technology is powerful and convenient method of generating mice lacking any chosen cell population.  相似文献   

4.
Gene targeting restricted to mouse striated muscle lineage.   总被引:8,自引:0,他引:8       下载免费PDF全文
Spatially and temporally regulated somatic mutations can be achieved by using the Cre/LoxP recombination system of bacteriophage P1. In order to develop gene knockouts restricted to striated muscle, we generated a transgenic mouse line expressing Cre recombinase under the control of the human alpha-skeletal actin promoter. Specific excision of a loxP-flanked gene was demonstrated in striated muscle, heart and skeletal muscle, in a pattern very similar to the expression of the endogenous alpha-skeletal actin gene. Therefore, the reported transgenic line can be used to target inactivation or activation of a given gene to the skeletal muscle lineage.  相似文献   

5.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre–LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre–LoxP system.  相似文献   

6.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre-LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre-LoxP system.  相似文献   

7.
The use of Cre-loxP technology for the purpose of cell type-specific gene ablation has revolutionized developmental biology and biomedicine. Several transgenic mouse lines have been developed for the analysis of gene function in the gastrointestinal tract, but in all of these the expression of Cre is limited to the epithelial cell layer. No Cre- expressing transgenic mouse lines ("Cre lines") exist for the deletion of loxP-flanked genes specifically in gut mesoderm. To address this deficiency, we have derived a bacterial artificial chromosome based transgenic mouse line in which the Cre gene is controlled by the Foxl1 promoter and enhancer elements. X-Gal staining of Foxl1-Cre; Rosa26R bi-transgenic lines confirm that Foxl1-Cre results in recombination specifically in the gastrointestinal mesenchyme. The Foxl1-Cre line will facilitate the dissection of mesenchymal to epithelial signaling that is known to play a major role in the patterning and function of the gastrointestinal tract.  相似文献   

8.
The Cre-loxP site-specific recombination system was used for cell lineage analysis in mammals. We constructed an expression plasmid, pCETZ-17, which consists of cytomegalovirus enhancer/chicken beta-actin promoter (CAG), a portion of the rabbit beta-globin gene, loxP-flanked DNA sequence (containing enhanced green fluorescent protein (EGFP) cDNA), and lacZ gene encoding E. coli beta-galactosidase (beta-gal). When circular pCETZ-17 plasmid DNA was microinjected into the pronuclei of fertilized eggs and these eggs were allowed to develop to two-cell stage, 62.8% (59/94) of the two-cell embryos exhibited distinct fluorescence in one or both blastomeres, but never expressed lacZ protein, as evaluated by histochemical staining with X-Gal, a substrate for beta-gal. When both circular plasmids, pCETZ-17 and pCAG/NCre (containing CAG and DNA sequences encoding nuclear location signal and Cre), were co-injected into fertilized eggs, almost all (87.0%, 47/54) embryos exhibited low or no fluorescence, but 51.9% (27/52) exhibited positive staining for beta-gal activity. This indicates that transient expression of the Cre recombinase gene removed the loxP-flanked DNA sequence in pCETZ-17 and then caused expression of the downstream lacZ sequence. We next microinjected pCETZ-17 into the pronuclei of fertilized eggs, cultured these injected eggs for 1 day, and collected only two-cell embryos expressing EGFP in both blastomeres. One blastomere of the EGFP-expressing two-cell embryos was microinjected with pCAG/NCre, and these treated embryos were cultured for 1 day up to four-cell stage. When the developing four-cell embryos were subjected to staining with X-Gal, cell lineage-related staining pattern for beta-gal activity was observed in most (77.8%, 7/9) embryos. These findings were further confirmed using two-cell embryos derived from a transgenic mouse line carrying CETZ-17 transgene. Thus, our system, which is based on transient expression of the Cre recombinase gene directly introduced into nuclei of embryonic cells by microinjection, is a powerful means for cell lineage analysis in mammals.  相似文献   

9.
The bacteriophage enzyme Cre is a site-specific recombinase widely used to delete loxP-flanked DNA sequences in lineage-specific fashion. Several mouse lines that direct Cre expression to lymphoid progenitors in the thymus have been established, but a side-by-side comparison of when they first become active, and/or their relative efficiency at various developmental stages, has been lacking. In this study, we evaluated these in four common Cre transgenic strains with thymus-initiated promoters (Lck, Cd2, or Cd4). We found that while all of them eventually labeled nearly all thymocytes, their kinetics were dramatically different, and other than Cd4[Cre], did not faithfully recapitulate the expression pattern of the corresponding endogenous gene. Perhaps even more importantly, while thymuses from some strains compared favorably to thymuses from control (Cre-negative) mice, we found that Cre expression could also result in off-target effects, including moderate to severe decreases in thymic cellularity. These effects occurred in the absence of loxP-flanked DNA target genes, and were dose and copy number dependent. Loss of cellularity was attributable to a specific decrease in CD4+8+ immature cells, and corresponds to an increased rate of programmed cell death. In addition to a comprehensive analysis of activation kinetics in thymus-initiated Cre transgenes, our data show that Cre is toxic to CD4+8+ cells in a dose-dependent fashion, and emphasize that the choice of thymus-initiated Cre strain is critically important for minimizing off-target effects of Cre.  相似文献   

10.
We employed the Cre recombinase/loxP system to create a mouse line in which PKA activity can be inhibited in any cell-type that expresses Cre recombinase. The mouse line carries a mutant Prkar1a allele encoding a glycine to aspartate substitution at position 324 in the carboxy-terminal cAMP-binding domain (site B). This mutation produces a dominant negative RIα regulatory subunit (RIαB) and leads to inhibition of PKA activity. Insertion of a loxP-flanked neomycin cassette in the intron preceding the site B mutation prevents expression of the mutant RIαB allele until Cre-mediated excision of the cassette occurs. Embryonic stem cells expressing RIαB demonstrated a reduction in PKA activity and inhibition of cAMP-responsive gene expression. Mice expressing RIαB in hepatocytes exhibited reduced PKA activity, normal fasting induced gene expression, and enhanced glucose disposal. Activation of the RIαB allele in vivo provides a novel system for the analysis of PKA function in physiology.  相似文献   

11.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

12.
Transgene expression from short promoters in transgenic animals can lead to unwanted transgene expression patterns, often as a byproduct of random integration of the expression cassette into the host genome. Here I demonstrate that the often used PB-Cre4 line (also referred to as “Probasin-Cre”), although expressing exclusively in the male prostate epithelium when transmitted through male mice, can lead to recombination of loxP-flanked alleles in a large variety of tissues when transmitted through female mice. This aberrant Cre activity due to Cre expression in the oocytes leads to different outcomes for maternally or paternally transmitted loxP-flanked alleles: Maternally inherited loxP-flanked alleles undergo recombination very efficiently, making female PB-Cre4 mice an efficient monoallelic “Cre deleter line”. However, paternally inherited loxP-flanked alleles are inefficiently recombined by maternal PB-Cre4, giving rise to mosaic expression patterns in the offspring. This mosaic recombination is difficult to detect with standard genotyping approaches of many mouse lines and should therefore caution researchers using PB-Cre4 to use additional approaches to exclude the presence of recombined alleles. However, mosaic recombination should also be useful in transgenic “knockout” approaches for mosaic gene deletion experiments.  相似文献   

13.
Epstein-Barr virus (EBV) episomes are stably maintained in permissive proliferating cell lines due to EBV nuclear antigen 1 (EBNA-1) protein-mediated replication and segregation. Previous studies showed the ability of EBV episomes to confer long-term transgene expression and correct genetic defects in deficient cells. To achieve quantitative delivery of EBV episomes in vitro and in vivo, we developed a binary helper-dependent adenovirus (HDA)-EBV hybrid system that consists of one HDA vector for the expression of Cre recombinase and a second HDA vector that contains all of the sequences for the EBV episome flanked by loxP sites. Upon coinfection of cells, Cre expressed from the first vector recombined loxP sites on the second vector. The resulting circular EBV episomes expressed a transgene and contained the EBV-derived family of repeats, an EBNA-1 expression cassette, and 19 kb of human DNA that functions as a replication origin in mammalian cells. This HDA-EBV hybrid system transformed 40% of cultured cells. Transgene expression in proliferating cells was observed for over 20 weeks under conditions that selected for the expression of the transgene. In the absence of selection, EBV episomes were lost at a rate of 8 to 10% per cell division. Successful delivery of EBV episomes in vivo was demonstrated in the liver of transgenic mice expressing Cre from the albumin promoter. This novel gene transfer system has the potential to confer long-term episomal transgene expression and therefore to correct genetic defects with reduced vector-related toxicity and without insertional mutagenesis.  相似文献   

14.
It is generally believed that too high or low levels of endothelin-1 (ET-1), a strong vasoconstrictor, may be detrimental to animals. Therefore, in order to understand the in vivo function of ET-1, we used a conditional transgenic approach, Cre/loxP recombination system, to generate transgenic mice that over-express ET-1 in a tissue-specific manner. In such a strategy a single transgenic mouse line, ELSE, was initially generated where a general promoter, human elongation factor 1alpha (hEF1alpha) promoter, was used to drive the expression of a loxP-flanked sequence containing the lacZ reporter gene and a STOP cassette before the ET-1 cDNA, the recombinational competency of which was confirmed in an Escherichia coli test system. In ELSE mice, expression of the reporter lacZ was limited to spermatozoa and spermatogonia as well as Sertoli, Leydig and endothelial cells in the testis, thus confirming the suitability of these mice for the generation of testes-limited ET-1 expression. To generate transgenic progeny with ET-1 over-expression in the testis (successful recombination, ELSE/ELT), ELSE mice were mated with EIIa-cre mice expressing Cre recombinase in pre-implantation mouse embryos. These ELSE/ELT mice exhibiting testis-specific ET-1 over-expression had normal reproductive function and showed no obvious alterations in gross testicular morphology. Although over-expression of ET-1 leads to reduction of testicular blood flow, young adult ELSE/ELT mice showed no obvious signs of inflammation, fibrosis or abnormal proliferation of cells in the testes of young ELSE/ELT mice by histochemical analyses.  相似文献   

15.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

16.
Lin FY  Yang X 《遗传》2011,33(5):469-484
基于Cre-loxP等位点特异性重组系统的条件基因打靶技术在解析基因功能和制备疾病小鼠模型方面发挥着极其重要的作用。但包括Cre重组酶转基因的表达模式不理想、重组效率存在差异、Cre重组酶的毒性等在内的Cre-loxP重组系统相关的缺陷以及条件基因打靶技术本身存在的问题,如遗传背景、育种策略、实验对照、基因代偿等方面的影响往往被忽略,严重影响基因功能和小鼠表型解析的准确性。针对这些问题,精细调控实现Cre重组酶的理想时空特异性表达、详尽地分析Cre重组酶的重组效率、降低Cre重组酶的毒性、遗传背景单一化、优化育种策略、设立严格实验对照、多基因联合条件基因打靶等诸多解决方案应予以采纳。  相似文献   

17.
A chicken B lymphoma line, DT40, hypermutates immunoglobulin (Ig) genes spontaneously during culture. Thus, cultured DT 40 cells constitute a useful Ig library for screening antibodies (Abs) in vitro. To fix desirable Ig mutants by stopping hypermutation or to resume mutation for further improvement of Ab affinity, activation-induced cytidine deaminase (AID), a key enzyme responsible for the Ig mutation machinery, must be switched on or off. To this end, we generated a DT40 line whose one AID allele was disrupted, and the other allele was replaced by the loxP-flanked AID construct. In this engineered cell line designated as DT40-SW, AID expression could be switched reversibly by tamoxifen-regulated Cre recombinase. Devices were also introduced to discriminate between the "AID-ON" and the "AID-OFF" cells by GFP expression and puromycin resistance, respectively. Starting from a single DT40-SW cell, Ig gene repertoire was efficiently diversified during culture only when AID expression was on.  相似文献   

18.
By applying the mammalian codon usage to Cre recombinase, we improved Cre expression, as determined by immunoblot and functional analysis, in three different mammalian cell lines. The improved Cre (iCre) gene was also designed to reduce the high CpG content of the prokaryotic coding sequence, thereby reducing the chances of epigenetic silencing in mammals. Transgenic iCre expressing mice were obtained with good frequency, and in these mice loxP-mediated DNA recombination was observed in all cells expressing iCre. Moreover, iCre fused to two estrogen receptor hormone binding domains for temporal control of Cre activity could also be expressed in transgenic mice. However, Cre induction after administration of tamoxifen yielded only low Cre activity. Thus, whereas efficient activation of Cre fusion proteins in the brain needs further improvements, our studies indicate that iCre should facilitate genetic experiments in the mouse.  相似文献   

19.
The Split-Cre system is a powerful tool for genetic manipulation and can be used to spatiotemporally control gene expression in vivo. However, the low activity of the reconstituted NCre/CCre recombinase in the Split-Cre system limits its application as an indicator of the simultaneous expression of a pair of genes of interest. Here, we describe two approaches for improving the activity of the Split-Cre system after Cre reconstitution based on self-associating split GFP (Split-GFP) and SpyTag/SpyCatcher conjugation. First, we created the Split-GFP-Cre system by constructing fusion proteins of NCre and CCre with the N-terminal and C-terminal subunits of GFP, respectively. Reconstitution of Cre by GFP-mediated dimerization of the two fusion proteins resulted in recombinase activity approaching that of full-length Cre in living cells. Second, to further increase recombinase activity at low levels of Split-Cre expression, the Split-Spy-GCre system was established by incorporating the sequences for SpyTag and SpyCatcher into the components of the Split-GFP-Cre system. As anticipated, covalent conjugation of the SpyTag and SpyCatcher segments improved Split-GFP dimerization to further increase Cre recombinase activity in living cells. The increased efficiency and robustness of this dual-split system (Split-Cre and Split-GFP) minimize the problems of incomplete double gene-specific KO or low labeling efficiency due to poor NCre/CCre recombinase activity. Thus, this Split-Spy-GCre system allows more precise gene manipulation of cell subpopulations, which will provide advanced analysis of genes and cell functions in complex tissue such as the immune system.  相似文献   

20.
Induced DNA recombination by Cre recombinase protein transduction   总被引:1,自引:0,他引:1  
Cre is a DNA recombinase that recognizes 34 base-pair loxP sites of recombination. We have developed a cell-permeable Cre recombinase, TATCre, that is capable of mediating deletion of loxP-flanked targets by simply adding TATCre to cell cultures. Thus, TATCre allows efficient induced DNA recombination without the use of a Cre recombinase transgene or any other genetic material and should prove useful for the genetic manipulation of a wide variety of cell types that have been engineered to possess loxP sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号