首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The seeds of many plant species present a food body that is consumed by animal dispersers. In theory, if the animals are polyphagous, the availability of alternative food resource other than the diaspore itself may influence its dispersal and survival. We used the myrmecochore Helleborus foetidus L. (Ranunculaceae), the seeds of which are attached to a lipid-rich elaiosome that is attractive to ants, as a model system to investigate (1) whether alternative foods that are present along with the plant affect ant foraging behavior and diaspore removal and (2) whether food availability in an ant nest affects seed predation and germination. In a field experiment, artificial diaspore depots were offered together with either sugar, insect corpses, seed, or no food (control). Contrary to the prediction that ants would rather concentrate their foraging effort on the highly rewarding alternative foods only, many workers, attracted by the sugar, switched to the hellebore diaspores, which significantly enhanced removal rate. Results obtained in the laboratory further indicated that the larvae of Aphaenogaster iberica (a major seed disperser) predated more on the H. foetidus embryos when no alternative food was available. This, in turn, slightly reduced seed germination. Overall, these results shed light, for the first time, on the potential indirect effects of alternative resources on the fate of diaspores adapted for ant dispersal.  相似文献   

2.
The evolution of dispersal at range margins received much attention recently, especially in the context of dynamic range shifts, such as those following climate change. However, much less attention has been devoted to study variation in and selection on dispersal at nonexpanding range margins, where populations are often small and isolated, and empirical test is dearly missing. To fill this gap, we tested whether dispersal of an ant‐dispersed perennial plant (Sternbergia clusiana) is quantitatively and/or qualitatively reduced toward a nonexpanding range margin. We evaluated plant investment in dispersal structures (elaiosome), seed removal rates, and the relative abundance, activity, and behavior of low‐ and high‐quality seed‐dispersing ants in six sites ranging from mesic Mediterranean site to arid site (>600 to <100 mm of annual rainfall, respectively), which marks the southern range margin of the species. In a set of cafeteria and baiting experiments, we found that overall seed removal rates, the contribution of high‐quality dispersers, maximum dispersal distance and dispersal‐conducive ant behavior decreased toward range margins. These findings agree with a lower investment in reward by range margin plant populations, as reflected by lower elaiosome/seed ratio, but not by variation in the reward chemistry. More than variation in traits controlled by the plants, the variation in ant–seed interactions could be attributed to reduced presence and activity of the more efficient seed‐dispersing ants in the marginal populations. Specifically, we found a mismatch between local distribution of potentially effective seed dispersers and that of the plant, even though those dispersers were observed in the study site. Interestingly, although the observed variation in the outcome of ant–seed interactions supported the prediction of reduced dispersal at nonexpanding range margins with small and isolated populations, the underlying mechanism seems to be incidental difference in the seed‐dispersing ant community rather than a plant‐mediated response to selection.  相似文献   

3.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

4.
The ecological influence of changes in the functional guild and species composition of ant assemblages on ant‐dispersal mutualisms is still poorly known. Using a multi‐scale approach over an 800 km range within the Iberian Peninsula, we tested the hypothesis that variation in seed removal rate was related to functional guild rather than to species composition variations of disperser assemblages in the myrmecochore herb Helleborus foetidus. At least two premises must be confirmed to validate this hypothesis: 1) ant assemblages that are dissimilar in species composition but with similar functional guild composition will not differ significantly in seed removal, and 2) assemblages with different functional guild composition will render different seed removal services. We conducted 3328 ant‐visitor censuses on 462 individual plants to identify both the species composition and functional guild variation of the ant‐disperser assemblage, and the plant seed removal rate. Functional guild composition of the ant assemblage was determined by the proportion of visits of ants acting as legitimate dispersers, facultative dispersers or elaiosome predators. Results showed that ant‐seed dispersal success seemed to be more sensitive to species composition changes of the ant assemblage than to functional guild shifts. However, this sensitivity was scale‐dependent. Thus, at the fine, inter‐individual scale, seed removal covaried with the species and functional guild composition of the ant assemblages; at the inter‐populational scale, differences in seed removal tended to be related to the dissimilarity of the assemblage species composition rather than the assemblage functional guild; finally, inter‐regional differences in seed removal were unrelated to dissimilarities of the ant assemblage composition or functional guild. Though differences in seed removal and the relative frequency of the legitimate dispersers tended to be positively correlated, none of the above premises were fully confirmed in this study. Therefore, our results did not support in full the hypothesis that the variation in seed removal was explained by shifts in functional guild composition, rather than shifts in species composition.  相似文献   

5.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

6.
Several studies relate removal of diaspores from different ant-dispersed plant species to the size of their claiosomes. This study is the first one to relate intraspecific variation in claiosome size to removal of diaspores by ants. This approach circumvents the problem posed by interspecific variation in chemistry and morphology of elaiosomes. We used the systemHepatica nobilis Mill. (Ranunculaceae) andMyrmica ruginodis Nyl. The elaiosome was the attractive part of the diaspore and its attractiveness decreased quickly after release from the fruit. In experimental runs where ants collected diaspores, the elaiosome size of accepted diaspores was larger than of those rejected and the largest diaspores were collected first. Since size of diaspore, elaiosome and achene were correlated, the diaspores that were removed first had both the largest elaiosome and achene. However, our experiments suggested that elaiosome size was more important to removal than achene size or the elaiosome:achene size ratio. If ant dispersal improves plant fitness, elaiosome size and hence diaspore size would be expected to increase over time. However, such directional selection mediated by the ants is probably counterbalanced by the plant. Seed predators and a negative trade-off between number and size of seeds would, among other factors, select for smaller diaspore size,i.e. counteract the effect of the ants' preference for larger elaiosomes.  相似文献   

7.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

8.
Conflicts of selection on diaspore traits throughout the dispersal cycle can limit the evolutionary consequences of seed dispersal. However, these conflicts have never been investigated in directed dispersal systems. We explored conflicts of selection through life stages of dispersal in the myrmecochorous herb Helleborus foetidus. Seeds are subject to two contrasting partial selective scenarios. Undispersed seeds are subject to positive directional selection on seed size characters, whereas seeds dispersed are subject to stabilizing selection for size. In both scenarios, seedling establishment determined the magnitude and direction of selection. This does not reflect ant preferences for seed size. However, total selection still depends largely on ant activity, as ants control the relative importance of each selective scenario. We advocate the use of analytical approaches combining multiplicative fitness and microenvironment‐specific selection to more realistically estimate the realized selection on traits functional during several life stages. This approach may be extended to any organism dispersing offspring to different environments.  相似文献   

9.
Abstract

Background: Elaiosomes serve as a reward for seed-dispersing ants. The size of the elaiosome and the elaiosome–seed mass (ESM) ratio are expected to affect seed dispersal, whilst seed size affects the establishment of seedlings. Elaiosomes and seeds can undergo independent change, thus variation in these traits may arise through heterogeneous selection for seedling establishment and for dispersal. Only a few studies have examined intraspecific variation in these traits.

Aims: The aim of this study was to determine if the ratio of elaiosome–seed mass was different in two co-occurring congeneric plant species (Corydalis intermedia and C. solida). Under the hypothesis that the ESM ratio affected diaspore attractiveness to ants, the allometric relationship between elaiosome and seed mass was used to infer how selection by ants may shape the diaspore.

Methods: Seed and elaiosome mass were measured in fruits collected from central and marginal populations of the two plant species. The allometric relationship between seed and elaiosome mass was obtained using major axis regression. In situ cafeteria experiments estimated the removal rate of diaspores by ants.

Results: Intra- and interspecific variation in diaspore traits were found. The selfing C. intermedia produced heavier seeds and elaiosomes than the outcrossing C. solida. Ants removed more diaspores from C. intermedia where both species were present. A slope larger than one characterised the allometric relationship between elaiosome and seed mass in both species. This slope was twice as steep in the central populations of C. intermedia compared to marginal ones.

Conclusions: Results indicate that in C. intermedia elaiosome mass must increase more than proportionally with increasing seed mass for the diaspore to remain attractive to ants. The direction of interspecific differences suggests that a plant-mating system may affect selection for dispersal.  相似文献   

10.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

11.
Auld  Tony D.  Denham  A.J. 《Plant Ecology》1999,144(2):201-213
The role seed predators play in influencing the dynamics of plant populations has been little studied in Australia. The interaction of ant dispersal and seed predation on the soil seedbank in six shrubby species of Grevillea from the Sydney region of southeastern Australia was examined in selective exclusion experiments, seed array trials and placement of single seeds on the ground.Two distinct seed types in Grevillea were examined and different seed dispersal and post-dispersal seed predation patterns were associated with each: (a) seeds lacking an elaiosome were not attractive to ants and annual seed losses of between 82 and 95% were found in vegetation unburnt for greater than 8 years. Native rodents, Rattus fuscipes, and macropods, Wallabia bicolor, were responsible for these seed losses; (b) seeds with an elaiosome were rapidly handled by ants. Two functional types of ants were recognised. Most encounters were by ants that were small (Local) relative to seed size and these ants simply removed the elaiosome in situ or moved seeds only small distances (<20 cm). Some 0–24% of ant/seed encounters were by large (Removalist) ant species that were capable of moving seeds back to nests. In addition, Rattus fuscipes and Wallabia bicolor consumed at least 32–68% of seeds of Grevillea species with an elaiosome.Ants may reduce the overall levels of seed predation where seeds moved by Removalist ant species escape predation and are deposited in safe sites, hence allowing more seeds to reach the persistent soil seedbank. Mammals do not consume all seeds when ants are excluded, allowing for the potential for some seed escape from predation after seeds are discarded by Local ant species.  相似文献   

12.
This study assesses the dispersal mechanisms of the narrow endemic Polygala vayredae, analysing the functioning of its dispersal syndromes (anemochory and myrmecochory), the spatio-temporal variability of the disperser assemblage, foraging behaviour and dispersal ability, and the role of the elaiosome in ant attraction and seed germination. The dispersion of diaspores begins when either (1) capsules or seeds fall beneath the mother plant (barochory) or (2) the seeds are directly collected in the suspended capsules by ants (myrmecochory). As capsules frequently open and expose/disseminate seeds before leaving the mother plant, the adaptation for anemochory appears to be reduced and rarely functional, possibly with only occasional events of long-distance dispersal (e.g. under extreme weather conditions). P. vayredae is essentially myrmecochorous and a diverse array of ant species are involved in seed manipulation, with the elaiosome playing a major role in ant attraction. From the plant’s perspective for dispersal, the majority of ant species had a positive interaction with the seeds, but negative and potential neutral interactions were also observed. Overall, dispersal distances were limited and were mainly determined by ant body size. The frequency of interactions and the ant assemblage varied significantly both spatially and temporally, and these factors may have an effect on directing or disrupting the selection of plant traits. Low seed predation and similar germination rates of intact seeds compared with seeds without elaiosome indicate that seed predator avoidance and seed germination improvement after ant manipulation are not among the selective advantages of myrmecochory operating at present. Dispersal mechanisms that enhance seed dispersal within the population and only occasionally lead to long-distance dispersal events, along with the rarity and patchiness of suitable habitats, may be the main factors explaining the actual density and narrow distribution of this species.  相似文献   

13.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

14.
The directed dispersal hypothesis has two components: (1) non-random seed deposition by a predicted vector, which removes greater amounts of seeds to specific sites, and (2) higher seed survival and seedling establishment in these specific sites. Several studies suggest that ants perform both tasks. This study was designed to cover the processes from post-dispersed seeds to established juvenile plants of a typical ant-dispersed species. Our main objective was to determine whether Ricinus communis benefits from directed dispersal by ants to maintain its populations in previously colonized habitats. We examined whether there were differences between ant nest pile mounds and their vicinities in the: (1) densities of seeds with and without elaiosome, seedlings and juveniles; (2) performance of post-dispersed seeds (without elaiosome), which may be affected by seed density, a key feature attracting seed predators; (3) nutrient quantities; (4) number of germinated seeds and juvenile biomass measurements; and (5) ant protection of seedlings from herbivores. There were more seeds without elaiosome, seedlings and juveniles in pile mounds, and seeds with elaiosome were equally distributed. There was no difference in the number of non-removed seeds in pile mounds and in their vicinities, and there was no tendency for this difference to increase or decrease with time or with initial seed density. Apparently, there was no difference in nutrient contents in soils of pile mounds and their vicinities. Likewise, there was no difference in the number of seeds germinated and in the biomass measurements of juveniles in both soils. Ants did not provide differential protection for seedlings in pile mounds against potential herbivores. The dispersal of Ricinus seeds by ants had a marked effect on the distribution pattern of the seeds, seedlings and juveniles of this species. However, there were no additional advantages for the seeds, seedlings and juveniles in pile mounds and, therefore, Ricinus does not benefit from directed dispersal by ants to maintain its populations in the study sites.  相似文献   

15.
The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.  相似文献   

16.
In myrmecochory, the relocation of diaspores to ant nests may lead to the enhancement of plant fitness because ant nests and their middens are often richer in essential nutrients than surrounding areas. This idea is the basis of the nutrient‐enrichment hypothesis (NEH), which suggests that nutrient enrichment may be a major selective influence in the evolution of myrmecochory. However, there is little evidence regarding whether the greater plant performance and fitness enhancement in ant nests is due to nutrient enrichment or other benefits of directed dispersal. Here, we present the results of a large‐scale seed‐sowing experiment that tests the NEH in the ant‐dispersed perennial herb Helleborus foetidus, exploring geographical and inter‐ant taxa variation. Experiments were conducted in three well‐separated regions of the Iberian Peninsula, targeting the nests of major and minor local ant dispersers (nine ant species in total) and the soil beneath maternal plants as seed destinations. Seedling emergence, survival and early establishment rates, as well as variation in soil characteristics, were obtained for each seed destination at each region. Our results do not fully support the NEH in our study system. Instead, we found that the advantage of ant nest soil for establishment in H. foetidus was conditional. Differences in soil fertility and concomitant differences in seedling establishment between ant nests and beneath the canopy of maternal plants were observed in some regions and for some ant species, but not in others. Thus, the conditional outcomes arise from inconsistencies among regions, between stages of seedling regeneration and among ant species in the advantages of being dispersed to nests. Because variation in the guilds of ant dispersers of myrmecochore plants across their ranges is common, this study illustrates the need to consider geographic and inter‐ant taxa variation for a complete evaluation of the NEH.  相似文献   

17.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

18.
For animal‐dispersed plants, evolutionary direction of seed traits is largely determined by the trait preference of disperser animals. Thus, clarifying conditions determining the disperser's preferences is important for understanding the evolution of dispersal traits in animal‐dispersed plants. The intensity of the interference competition among dispersers may be a factor affecting the seed trait preference of disperser animals, because it often weakens the food preference of various animals. To test this possibility, we examined correlation between the intensity of interference competition among disperser ants and their trait preference for seeds of an ant‐dispersed sedge, Carex tristachya Thunb. (Cyperaceae). By a cafeteria experiment conducted in the field, we first confirmed the overall preference by disperser ants for the elaiosome, which is a seed appendage facilitating the dispersal by ants. Second, we detected the negative correlation between the preference for elaiosomes and the frequency of interference among ants at a depot. Third, we compared this trend between dominants and subordinates of ants and revealed that the negative correlation was seen only in dominant species. These results suggest that the intensity of interference competition and the variation in its effect on animal species at different social status play important roles for the evolution of seed traits via the modification of seed trait preference by disperser animals.  相似文献   

19.
Seed dispersal by ants in the semi-arid Caatinga of North-East Brazil   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km(2) area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. METHODS: Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. KEY RESULTS: Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12.8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38-84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. CONCLUSIONS: Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not to be restricted to regions of nutrient-impoverished soil or to fire-prone regions.  相似文献   

20.
Byrne  M. M.  Levey  D. J. 《Plant Ecology》1993,107(1):363-374
At our Costa Rican field site, seeds defecated by frugivorous birds usually do not remain where they have been deposited. Many species of ants are attracted to frugivore defecations and remove seeds and/or pulp. Pheidole species selectively remove seeds, fungus-growing species (tribe Attini) remove both pulp and seeds. Seeds of many Melastomataceae have an appendage, which we hypothesized is an elaiosome. Indeed, preference trials demonstrated that two species of Pheidole selected seeds with the appendage over seeds of the same species in which the appendage had been removed. However, we found that these ants did not take the appendage when it was offered by itself. We conclude that the appendage is not an elaiosome. In further trials, different ant species preferentially selected different seed species. These ants consumed some seeds and deposited others unharmed in refuse piles. We conclude that because the composition of leaf-litter ant communities is highly variable between neighboring square meter plots, and the probability of seed predation depends upon the species of ant, the over-all effect of ants on seed shadows and seed banks is spatially unpredictable. Addendum: The names of the two Pheidole emphasized in this study. P. nebulosa and P. nigricula, are unpublished names from a generic revision being prepared by E. O. Wilson and W. L. Brown. Their use here is not intended to constitute taxonomic publication but is solely for more precise indentification in future ecological research of similar nature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号